iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-642-05177-7_3
Machine Learning Algorithms Inspired by the Work of Ryszard Spencer Michalski | SpringerLink
Skip to main content

Machine Learning Algorithms Inspired by the Work of Ryszard Spencer Michalski

  • Chapter
Advances in Machine Learning I

Part of the book series: Studies in Computational Intelligence ((SCI,volume 262))

  • 2243 Accesses

Abstract

In this chapter we first define the field of inductive machine learning and then describe Michalski’s basic AQ algorithm. Next, we describe two of our machine learning algorithms, the CLIP4: a hybrid of rule and decision tree algorithms, and the DataSqeezer: a rule algorithm. The development of the latter two algorithms was inspired to a large degree by Michalski’s seminal paper on inductive machine learning (1969). To many researchers, including the authors, Michalski is a “father” of inductive machine learning, as Łukasiewicz is of multivalued logic (extended much later to fuzzy logic) (Łukasiewicz, 1920), and Pawlak of rough sets (1991). Michalski was the first to work on inductive machine learning algorithms that generate rules, which will be explained via describing his AQ algorithm (1986).

Professor Michalski, after delivering talk on artificial intelligence at the University of Toledo, Ohio, in 1986, at the invitation of the first author, explained the origin of his second name: Spencer. Namely, he used the right of changing his name while becoming a United States citizen and adopted it after the well-known philosopher Herbert Spencer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Cios, K.J., Liu, N.: An algorithm which learns multiple covers via integer linear programming. Part I - The CLILP2 Algorithm. Kybernetes 24, 29–50 (1995)

    Article  Google Scholar 

  • Cios, K.J., Liu, N.: An algorithm which learns multiple covers via integer linear programming. Part I - The CLILP2 Algorithm. Kybernetes 24, 29–50 (1995); (The Norbert Wiener 1997 Outstanding Paper Award, http://www.mcb.co.uk/literati/outst97.htm#k )

  • Cios, K.J., Wedding, D.K., Liu, N.: CLIP3: cover learning using integer programming. Kybernetes 26(4-5), 513–536 (1997)

    Article  Google Scholar 

  • Cios, K.J., Pedrycz, W., Swiniarski, R., Kurgan, L.: Data mining: a knowledge discovery approach. Springer, Heidelberg (2007)

    MATH  Google Scholar 

  • Cios, K.J., Pedrycz, W., Swiniarski, R.: Data mining methods for knowledge discovery. Kluwer, Dordrecht (1998)

    MATH  Google Scholar 

  • Cios, K.J., Kurgan, L.: CLIP4: Hybrid inductive machine learning algorithm that generates inequality rules. Information Sciences 163(1-3), 37–83 (2004)

    Article  Google Scholar 

  • Farhangfar, A., Kurgan, L., Pedrycz, W.: A novel framework for imputation of missing values in databases. IEEE Transactions on Systems, Man, and Cybernetics, Part A 37(5), 692–709 (2007)

    Article  Google Scholar 

  • Farhangfar, A., Kurgan, L., Dy, J.: Impact of imputation of missing values on classification error for discrete data. Pattern Recognition 41(12), 3692–3705 (2008)

    Article  MATH  Google Scholar 

  • Kurgan, L.: Meta mining system for supervised learning, Ph.D dissertation, the University of Colorado at Boulder, Department of Computer Science (2003)

    Google Scholar 

  • Kurgan, L., Cios, K.J.: Meta mining architecture for supervised learning. In: 7th International Workshop on High Performance and Distributed Mining, Proc. 4th International SIAM Conference on Data Mining, Lake Buena Vista, FL, pp. 18–26 (2004)

    Google Scholar 

  • Kurgan, L., Cios, K.J.: CAIM discretization algorithm. IEEE Transactions on Data and Knowledge Engineering 16(2), 145–153 (2004)

    Article  Google Scholar 

  • Kurgan, L., Cios, K.J., Sontag, M., Accurso, F.: Mining the cystic fibrosis data. In: Zurada, J., Kantardzic, M. (eds.) Next generation of data-mining applications, pp. 415–444. IEEE Press - Wiley (2005)

    Google Scholar 

  • Kurgan, L., Cios, K.J., Dick, S.: Highly scalable and robust rule learner: performance evaluation and comparison. IEEE Transactions on Systems, Man, and Cybernetics, Part B 36(1), 32–53 (2006)

    Article  Google Scholar 

  • Mitchell, T.M.: Machine learning. McGraw-Hill, New York (1997)

    MATH  Google Scholar 

  • Kodratoff, Y.: Introduction to machine learning. Morgan Kaufmann, San Francisco (1988)

    MATH  Google Scholar 

  • Langley, P.: Elements of machine learning. Morgan Kaufmann, San Francisco (1996)

    Google Scholar 

  • Łukasiewicz, J.: O logice trójwartościowej (in Polish). Ruch Filozoficzny 5, 170–171 (1920); English translation: On three-valued logic. In: Borkowski, L. (ed.) Selected works by Jan Łukasiewicz, pp. 87–88. North–Holland, Amsterdam (1970)

    Google Scholar 

  • Michalski, R.S.: On the quasi minimal solution of the general covering problem. In: Proc. 5th International Symposium on Information Processing (FCIP 1969), Bled, Yugoslavia, vol. A3, pp. 25–128 (1969)

    Google Scholar 

  • Michalski, R.S.: Variable valued logic: system VLl. In: Proc. 1974 International Symposium on Multiple Valued Logic and Pattern Recognition, West Virginia University, Morgantown, pp. 323–346 (1974)

    Google Scholar 

  • Michalski, R.S.: Knowledge acquisition through conceptual clustering: a theoretical framework and algorithm for partitioning data into conjunctive concepts. International Journal of Policy Analysis and Information Systems 4, 219–243 (1980)

    MathSciNet  Google Scholar 

  • Michalski, R.S., Mozetic, I., Hong, J., Lavrac, N.: The multipurpose incremental learning system AQ15 and its testing application to three medical domains. In: Proc. 5th National Conference on Artificial Intelligence, pp. 1041–1045. Morgan-Kaufmann, San Francisco (1986)

    Google Scholar 

  • Mitchell, T.M.: Machine learning. McGraw-Hill, New York (1997)

    MATH  Google Scholar 

  • Quinlan, J.R.: C4.5 programs for machine learning. Morgan-Kaufmann, San Francisco (1993)

    Google Scholar 

  • Pawlak, Z.: Rough sets - theoretical aspects of reasoning about data. Kluwer, Dordrecht (1991)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cios, K.J., Kurgan, Ł.A. (2010). Machine Learning Algorithms Inspired by the Work of Ryszard Spencer Michalski. In: Koronacki, J., Raś, Z.W., Wierzchoń, S.T., Kacprzyk, J. (eds) Advances in Machine Learning I. Studies in Computational Intelligence, vol 262. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-05177-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-05177-7_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-05176-0

  • Online ISBN: 978-3-642-05177-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics