Abstract
In this paper, a new approach for extraction of discriminative and independent features is proposed. The proposed discriminant ICA (dICA) method jointly maximizes the inter-class variance and Negentropy of a given feature. Experimental results shows much improved classification performance when dICA features are used for recognition tasks over conventional ICA features. Moreover, dICA features show higher Fisher criterion score value suggesting a better capability to do class discrimination.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Hinton, G., Sejnowski, T.: Unsupervised learning: Foundations of Nuerla Computation. MIT Press, Cambridge (1999)
Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cognitive Neuroscience 3, 71–86 (1991)
Dhir, C.S., Lee, S.Y.: Hybrid Feature Selection: Combining Fisher Criterion and Mutual Information for Efficient Feature Selection. In: Köppen, M., Kasabov, N., Coghill, G. (eds.) ICONIP 2008. LNCS, vol. 5506, pp. 613–620. Springer, Heidelberg (2009)
Hyvarinen, A.: Fast and Robust Fixed-Point Algorithms for Independent Component Analysis. IEEE Trans. on Neural Networks 10, 626–634 (1999)
Hyvarinen, A., et al.: Independent Component Analysis. John Wiley & sons, Inc., Chichester (2001)
Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix factorization. Nature 401, 788–791 (1999)
Bell, A.J., Sejnowski, T.J.: An information-maximization approach to blind separation and blind deconvolution. Neural Computation 7, 1129–1159 (1995)
Bartlett, M.S., et al.: Face recognition by independent component analysis. IEEE Transactions on Neural Networks 13(6), 1450–1462 (2002)
Wang, G., et al.: Feature selection with conditional mutual information MaxMin in text categorization. In: Proc. Int. Conf. on Information and Knowledge Management, pp. 342–349 (2004)
Su, H., et al.: Face Recognition Method Using Mutual Information and Hybrid Feature. In: Proc. Int. Conf. on Computational Intelligence and Multimedia Applications, pp. 436–440 (2003)
Kaynak, C.: Methods of Combining Multiple Classifiers and Their Applications to Handwritten Digit Recognition MSc Thesis, Institute of Graduate Studies in Science and Engineering, Bogazici University (1995)
IMDB: Asian face image database. Technical report POSTECH, Korea, http://nova.postech.ac.kr/
Goldberger, J., Roweis, S., Hinton, G., Salakhutdinov, R.: Neighbourhood components analysis. In: Advances in Neural Information Processing Systems, vol. 17, pp. 513–520. MIT Press, Cambridge (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Dhir, C.S., Lee, S.Y. (2009). Discriminant Independent Component Analysis. In: Corchado, E., Yin, H. (eds) Intelligent Data Engineering and Automated Learning - IDEAL 2009. IDEAL 2009. Lecture Notes in Computer Science, vol 5788. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04394-9_27
Download citation
DOI: https://doi.org/10.1007/978-3-642-04394-9_27
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-04393-2
Online ISBN: 978-3-642-04394-9
eBook Packages: Computer ScienceComputer Science (R0)