iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-642-04394-9_27
Discriminant Independent Component Analysis | SpringerLink
Skip to main content

Discriminant Independent Component Analysis

  • Conference paper
Intelligent Data Engineering and Automated Learning - IDEAL 2009 (IDEAL 2009)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 5788))

Abstract

In this paper, a new approach for extraction of discriminative and independent features is proposed. The proposed discriminant ICA (dICA) method jointly maximizes the inter-class variance and Negentropy of a given feature. Experimental results shows much improved classification performance when dICA features are used for recognition tasks over conventional ICA features. Moreover, dICA features show higher Fisher criterion score value suggesting a better capability to do class discrimination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hinton, G., Sejnowski, T.: Unsupervised learning: Foundations of Nuerla Computation. MIT Press, Cambridge (1999)

    Google Scholar 

  2. Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cognitive Neuroscience 3, 71–86 (1991)

    Article  Google Scholar 

  3. Dhir, C.S., Lee, S.Y.: Hybrid Feature Selection: Combining Fisher Criterion and Mutual Information for Efficient Feature Selection. In: Köppen, M., Kasabov, N., Coghill, G. (eds.) ICONIP 2008. LNCS, vol. 5506, pp. 613–620. Springer, Heidelberg (2009)

    Google Scholar 

  4. Hyvarinen, A.: Fast and Robust Fixed-Point Algorithms for Independent Component Analysis. IEEE Trans. on Neural Networks 10, 626–634 (1999)

    Article  Google Scholar 

  5. Hyvarinen, A., et al.: Independent Component Analysis. John Wiley & sons, Inc., Chichester (2001)

    Book  MATH  Google Scholar 

  6. Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix factorization. Nature 401, 788–791 (1999)

    Article  Google Scholar 

  7. Bell, A.J., Sejnowski, T.J.: An information-maximization approach to blind separation and blind deconvolution. Neural Computation 7, 1129–1159 (1995)

    Article  Google Scholar 

  8. Bartlett, M.S., et al.: Face recognition by independent component analysis. IEEE Transactions on Neural Networks 13(6), 1450–1462 (2002)

    Article  Google Scholar 

  9. Wang, G., et al.: Feature selection with conditional mutual information MaxMin in text categorization. In: Proc. Int. Conf. on Information and Knowledge Management, pp. 342–349 (2004)

    Google Scholar 

  10. Su, H., et al.: Face Recognition Method Using Mutual Information and Hybrid Feature. In: Proc. Int. Conf. on Computational Intelligence and Multimedia Applications, pp. 436–440 (2003)

    Google Scholar 

  11. Kaynak, C.: Methods of Combining Multiple Classifiers and Their Applications to Handwritten Digit Recognition MSc Thesis, Institute of Graduate Studies in Science and Engineering, Bogazici University (1995)

    Google Scholar 

  12. IMDB: Asian face image database. Technical report POSTECH, Korea, http://nova.postech.ac.kr/

  13. Goldberger, J., Roweis, S., Hinton, G., Salakhutdinov, R.: Neighbourhood components analysis. In: Advances in Neural Information Processing Systems, vol. 17, pp. 513–520. MIT Press, Cambridge (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dhir, C.S., Lee, S.Y. (2009). Discriminant Independent Component Analysis. In: Corchado, E., Yin, H. (eds) Intelligent Data Engineering and Automated Learning - IDEAL 2009. IDEAL 2009. Lecture Notes in Computer Science, vol 5788. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04394-9_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04394-9_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04393-2

  • Online ISBN: 978-3-642-04394-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics