Abstract
Searching for motifs in graphs has become a crucial problem in the analysis of biological networks. In this context, different graph motif problems have been considered [13,7,5]. Pursuing a line of research pioneered by Lacroix et al. [13], we introduce in this paper a new graph motif problem: given a vertex colored graph G and a motif \(\mathcal{M}\), where a motif is a multiset of colors, find a maximum cardinality submotif \(\mathcal{M}' \subseteq \mathcal{M}\) that occurs as a connected motif in G. We prove that the problem is APX-hard even in the case where the target graph is a tree of maximum degree 3, the motif is actually a set and each color occurs at most twice in the tree. Next, we strengthen this result by proving that the problem is not approximable within factor \(2^{\rm {log^{\delta} n}}\), for any constant δ< 1, unless NP ⊆ DTIMEclass(2POLY log n). We complement these results by presenting two fixed-parameter algorithms for the problem, where the parameter is the size of the solution. Finally, we give exact fast exponential-time algorithms for the problem.
Supported by the Italian-French PAI= Galileo Project 08484VH.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alon, N., Yuster, R., Zwick, U.: Color coding. Journal of the ACM 42(4), 844–856 (1995)
Betzler, N., Fellows, M.R., Komusiewicz, C., Niedermeier, R.: Parameterized algorithms and hardness results for some graph motif problems. In: Ferragina, P., Landau, G.M. (eds.) CPM 2008. LNCS, vol. 5029, pp. 31–43. Springer, Heidelberg (2008)
Bruckner, S., Hüffner, F., Karp, R.M., Shamir, R., Sharan, R.: Topology-free querying of protein interaction networks. In: Batzoglou, S. (ed.) Proc. 13th Annual International Conference on Computational Molecular Biology (RECOMB 2009). LNCS, vol. 5541, pp. 74–89. Springer, Heidelberg (2009)
Diestel, R.: Graph theory, 2nd edn. Graduate texts in Mathematics, vol. 173. Springer, Heidelberg (2000)
Dondi, R., Fertin, G., Vialette, S.: Weak pattern matching in colored graphs: Minimizing the number of connected components. In: Proc. 10th Italian Conference on Theoretical Computer Science (ICTCS), Roma, Italy, pp. 27–38. World Scientific, Singapore (2007)
Downey, R., Fellows, M.: Parameterized complexity. Springer, Heidelberg (1999)
Fellows, M., Fertin, G., Hermelin, D., Vialette, S.: Sharp tractability borderlines for finding connected motifs in vertex-colored graphs. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 340–351. Springer, Heidelberg (2007)
Hein, J., Jiang, T., Wang, L., Zhang, K.: On the complexity of comparing evolutionary trees. Discrete Applied Mathematics 71, 153–169 (1996)
Jiang, T., Li, M.: On the approximation of shortest common supersequences and longest common subsequences. SIAM Journal on Computing 24, 1122–1139 (1995)
Karger, D., Motwani, R., Ramkumar, G.D.S.: On approximating the longest path in a graph. SIAM Journal on Computing 24, 1122–1139 (1995)
Kelley, B.P., Sharan, R., Karp, R.M., Sittler, T., Root, D.E., Stockwell, B.R., Ideker, T.: Conserved pathways within bacteria and yeast as revealed by global protein network alignment. Proceedings of the National Academy of Sciences 100(20), 11394–11399 (2003)
Koyutürk, M., Grama, A., Szpankowski, W.: Pairwise local alignment of protein interaction networks guided by models of evolution. In: Miyano, S., Mesirov, J., Kasif, S., Istrail, S., Pevzner, P.A., Waterman, M. (eds.) RECOMB 2005. LNCS (LNBI), vol. 3500, pp. 48–65. Springer, Heidelberg (2005)
Lacroix, V., Fernandes, C.G., Sagot, M.-F.: Motif search in graphs: application to metabolic networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB) 3(4), 360–368 (2006)
Niedermeier, R.: Invitation to fixed parameter algorithms. Lecture Series in Mathematics and Its Applications. Oxford University Press, Oxford (2006)
Papadimitriou, C.H., Yannakakis, M.: Optimization, approximation and complexity classes. Journal of Computer and System Sciences 43, 425–440 (1991)
Scott, J., Ideker, T., Karp, R.M., Sharan, R.: Efficient algorithms for detecting signaling pathways in protein interaction networks. Journal of Computational Biology 13, 133–144 (2006)
Sharan, R., Ideker, T., Kelley, B., Shamir, R., Karp, R.M.: Identification of protein complexes by comparative analysis of yeast and bacterial protein interaction data. In: Proc. 8th annual international conference on Computational molecular biology (RECOMB), San Diego, California, USA, pp. 282–289. ACM Press, New York (2004)
Sharan, R., Suthram, S., Kelley, R.M., Kuhn, T., McCuine, S., Uetz, P., Sittler, T., Karp, R.M., Ideker, T.: Conserved patterns of protein interaction in multiple species. Proc. Natl Acad. Sci. USA 102(6), 1974–1979 (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Dondi, R., Fertin, G., Vialette, S. (2009). Maximum Motif Problem in Vertex-Colored Graphs. In: Kucherov, G., Ukkonen, E. (eds) Combinatorial Pattern Matching. CPM 2009. Lecture Notes in Computer Science, vol 5577. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02441-2_20
Download citation
DOI: https://doi.org/10.1007/978-3-642-02441-2_20
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02440-5
Online ISBN: 978-3-642-02441-2
eBook Packages: Computer ScienceComputer Science (R0)