iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-642-01085-9_1
Genetic Algorithms for the Use in Combinatorial Problems | SpringerLink
Skip to main content

Genetic Algorithms for the Use in Combinatorial Problems

  • Chapter
Foundations of Computational Intelligence Volume 3

Part of the book series: Studies in Computational Intelligence ((SCI,volume 203))

  • 1921 Accesses

Abstract

Turbo code interleaver optimization is a NP-hard combinatorial optimization problem attractive for its complexity and variety of real world applications. In this paper, we investigate the usage and performance of recent variant of genetic algorithms, higher level chromosome genetic algorithms, on the turbo code optimization task. The problem as well as higher level chromosome genetic algorithms, that can be use for combinatorial optimization problems in general, is introduced and experimentally evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Schiavinotto, T., Stützle, T.: The Linear Ordering Problem: Instances, Search Space Analysis and Algorithms. Journal of Mathematical Modelling and Algorithms 4(3), 367–402 (2004)

    Article  Google Scholar 

  2. Bäck, T., Hammel, U., Schwefel, H.-P.: Evolutionary computation: comments on the history and current state. IEEE Transactions on Evolutionary Computation 1(1), 3–17 (1997)

    Article  Google Scholar 

  3. Berrou, C.: The ten-year-old turbo codes are entering into service. IEEE Communications Magazine 41(8), 110–116 (2003)

    Article  Google Scholar 

  4. Berrou, C., Glavieux, A., Thitimajshima, P.: Near Shannon limit error-correcting coding and decoding: turbo codes. In: Proc. Int. Conf. on Commun., pp. 1064–1070 (1993)

    Google Scholar 

  5. Bodenhofer, U.: Genetic Algorithms: Theory and Applications. Lecture notes. Fuzzy Logic Laboratorium Linz-Hagenberg (Winter, 2003/2004)

    Google Scholar 

  6. Dianati, M., Song, I., Treiber, M.: An introduction to genetic algorithms and evolution strategies. Technical report, University of Waterloo, Ontario, N2L 3G1, Canada (July 2002)

    Google Scholar 

  7. Durand, N., Alliot, J., Bartolom, B.: Turbo codes optimization using genetic algorithms. In: Angeline, P.J., Michalewicz, Z., Schoenauer, M., Yao, X., Zalzala, A. (eds.) Proceedings of the Congress on Evolutionary Computation, Mayflower Hotel, Washington D.C., USA, vol. 2, pp. 816–822. IEEE Press, Los Alamitos (1999)

    Google Scholar 

  8. Garello, R., Chiaraluce, F., Pierleoni, P., Scaloni, M., Benedetto, S.: On error floor and free distance of turbo codes. In: IEEE International Conference on Communications (ICC 2001), vol. 1, pp. 45–49 (2001)

    Google Scholar 

  9. Hokfelt, J., Maseng, T.: Methodical interleaver design for turbo codes. In: International Symposium on Turbo Codes

    Google Scholar 

  10. Jones, G.: Genetic and evolutionary algorithms. In: von Rague, P. (ed.) Encyclopedia of Computational Chemistry. John Wiley and Sons, Chichester (1998)

    Google Scholar 

  11. Koza, J.: Genetic programming: A paradigm for genetically breeding populations of computer programs to solve problems. Technical Report STAN-CS-90-1314, Dept. of Computer Science, Stanford University (1990)

    Google Scholar 

  12. Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press, Cambridge (1996)

    Google Scholar 

  13. Proakis, J.G.: Digital Communications, 4th edn. McGraw-Hill, New York (2001)

    Google Scholar 

  14. Rekh, S., Rani, S., Hordijk, W., Gift, P., Shanmugam: Design of an interleaver for turbo codes using genetic algorithms. The International Journal of Artificial Intelligence and Machine Learning 6, 1–5 (2006)

    Google Scholar 

  15. Snyder, L.V., Daskin, M.S.: A random-key genetic algorithm for the generalized traveling salesman problem. European Journal of Operational Research 174(1), 38–53 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  16. Townsend, H.A.R.: Genetic Algorithms - A Tutorial (2003)

    Google Scholar 

  17. Wu, A.S., Lindsay, R.K., Riolo, R.: Empirical observations on the roles of crossover and mutation. In: Bäck, T. (ed.) Proc. of the Seventh Int. Conf. on Genetic Algorithms, pp. 362–369. Morgan Kaufmann, San Francisco (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Snášel, V., Platoš, J., Krömer, P., Ouddane, N. (2009). Genetic Algorithms for the Use in Combinatorial Problems. In: Abraham, A., Hassanien, AE., Siarry, P., Engelbrecht, A. (eds) Foundations of Computational Intelligence Volume 3. Studies in Computational Intelligence, vol 203. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01085-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01085-9_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01084-2

  • Online ISBN: 978-3-642-01085-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics