iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-642-00580-0_15
Alignment-Based Partitioning of Large-Scale Ontologies | SpringerLink
Skip to main content

Alignment-Based Partitioning of Large-Scale Ontologies

  • Chapter
Advances in Knowledge Discovery and Management

Part of the book series: Studies in Computational Intelligence ((SCI,volume 292))

Abstract

Ontology alignment is an important task for information integration systems that can make different resources, described by various and heterogeneous ontologies, interoperate. However very large ontologies have been built in some domains such as medicine or agronomy and the challenge now lays in scaling up alignment techniques that often perform complex tasks. In this paper, we propose two partitioning methods which have been designed to take the alignment objective into account in the partitioning process as soon as possible. These methods transform the two ontologies to be aligned into two sets of blocks of a limited size. Furthermore, the elements of the two ontologies that might be aligned are grouped in a minimal set of blocks and the comparison is then enacted upon these blocks. Results of experiments performed by the two methods on various pairs of ontologies are promising.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. The Scientific American, 34–43 (2001)

    Google Scholar 

  • Grau, B.C., Parsia, B., Sirin, E., Kalyanpur, A.: Automatic Partitioning of OWL Ontologies Using e-connections. In: DL 2005, Proceedings of the 18th International Workshop on Description Logics (2005)

    Google Scholar 

  • Guha, S., Rastogi, R., Shim, K.: ROCK: A Robust Clustering Algorithm for Categorical Attributes. Information Systems 25(5), 345–366 (2000)

    Article  Google Scholar 

  • Haase, P., Honavar, V., Kutz, O., Sure, Y., Tamilin, A. (eds.): Proceedings of the 1st International Workshop on Modular Ontologies, WoMO 2006, co-located with the International Semantic Web Conference, ISWC 2006. CEUR Workshop Proceedings, vol. 232 (2007), CEUR-WS.org

  • Hamdi, F., Zargayouna, H., Safar, B., Reynaud, C.: TaxoMap in the OAEI 2008 Alignment Contest. In: Proceedings of the 3th International Workshop on Ontology Matching, OM 2008 (2008)

    Google Scholar 

  • Hu, W., Qu, Y., Cheng, G.: Matching large ontologies: A divide-and-conquer approach. Data Knowl. Eng. 67(1), 140–160 (2008)

    Article  Google Scholar 

  • Hu, W., Zhao, Y., Qu, Y.: Partition-Based Block Matching of Large Class Hierarchies. In: Mizoguchi, R., Shi, Z.-Z., Giunchiglia, F. (eds.) ASWC 2006. LNCS, vol. 4185, pp. 72–83. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  • Nagy, M., Vargas-Vera, M., Stolarski, P., Motta, E.: DSSim Results for OAEI. In: Proceedings of the 3th International Workshop on Ontology Matching, OM 2008 (2008)

    Google Scholar 

  • Noy, N.F., Musen, M.A.: PROMPT: Algorithm and Tool for Automated Ontology Merging and Alignment. In: AAAI/IAAI, pp. 450–455 (2000)

    Google Scholar 

  • Shvaiko, P., Euzenat, J.: A Survey of Schema-Based Matching Approaches. Journal on Data Semantics IV, 146–171

    Google Scholar 

  • Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. VLDB Journal: Very Large Data Bases 10(4), 334–350 (2001)

    Article  MATH  Google Scholar 

  • Reynaud, C., Safar, B.: Techniques structurelles d’alignement pour portails web. RNTI, Revue des Nouvelles Technologies de l’Information (2007)

    Google Scholar 

  • Stuckenschmidt, H., Klein, M.: Structured-Based Partitioning of Large Concept Hierarchies. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 289–303. Springer, Heidelberg (2004)

    Google Scholar 

  • Wang, P., Xu, B.: Lily: Ontology Alignment Results for OAEI 2008. In: Proceedings of the 3th International Workshop on Ontology Matching, OM 2008 (2008)

    Google Scholar 

  • Wang, Z., Wang, Y., Zhang, S., Shen, G., Du, T.: Matching Large Scale Ontology Effectively. In: Mizoguchi, R., Shi, Z.-Z., Giunchiglia, F. (eds.) ASWC 2006. LNCS, vol. 4185, pp. 99–105. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  • Wu, Z., Palmer, M.: Verb semantics and lexical selection. In: Proc. 32nd Annual Meeting of the Association for Computational Linguistics (ACL), pp. 133–138 (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hamdi, F., Safar, B., Reynaud, C., Zargayouna, H. (2010). Alignment-Based Partitioning of Large-Scale Ontologies. In: Guillet, F., Ritschard, G., Zighed, D.A., Briand, H. (eds) Advances in Knowledge Discovery and Management. Studies in Computational Intelligence, vol 292. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00580-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00580-0_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00579-4

  • Online ISBN: 978-3-642-00580-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics