iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-540-87700-4_109
Driving Cars by Means of Genetic Algorithms | SpringerLink
Skip to main content

Driving Cars by Means of Genetic Algorithms

  • Conference paper
Parallel Problem Solving from Nature – PPSN X (PPSN 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5199))

Included in the following conference series:

Abstract

The techniques and the technologies supporting Automatic Vehicle Guidance are an important issue. Automobile manufacturers view automatic driving as a very interesting product with motivating key features which allow improvement of the safety of the car, reducing emission or fuel consumption or optimizing driver comfort during long journeys. Car racing is an active research field where new advances in aerodynamics, consumption and engine power are critical each season. Our proposal is to research how evolutionary computation techniques can help in this field. As a first goal we want to automatically learn to drive, by means of genetic algorithms, optimizing lap times while driving through three different circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agapitos, A., Togelius, J., Lucas, S.: Evolving controllers for simulated car racing using object oriented genetic programming. In: Procs. Conference on Genetic and Evolutionary Computation, pp. 1543–1550. ACM, New York (2007)

    Google Scholar 

  2. Baluja, S., Caruana, R.: Removing the genetics from the standard genetic algorithm. In: Prieditis, A., Russel, S. (eds.) The Int. Conf. on Machine Learning 1995, San Mateo, CA, pp. 38–46. Morgan Kaufmann Publishers, San Francisco (1995)

    Chapter  Google Scholar 

  3. Baluja, S., Sukthankar, R., Hancock, J.: Prototyping intelligent vehicle modules using evolutionary algorithms (1998)

    Google Scholar 

  4. Bernard, J., Gruening, J., Hoffmeister, K.: Evaluation of vehicle/driver performance using genetic algorithms, society of automotive engineers

    Google Scholar 

  5. Bertozzi, M., Broggi, A., Conte, G., Fascioli, A.: The experience of the argo autonomous vehicle. In: Procs. Spie 1998 (1998)

    Google Scholar 

  6. Chen, Q., Ozguner, U., Redmill, K.: Ohio state university at the 2004 darpa grand challenge: Developing a completely autonomous vehicle. IEEE Intelligent Systems 19(5), 8–11 (2004)

    Article  Google Scholar 

  7. Collado., J.M., Hilario, C., de la Escalera, A., Armingol, J.M.: Self-calibration of an on-board stereo-vision system for driver assistance systems. In: Intelligent Vehicles Symposium, pp. 156–162 (2006)

    Google Scholar 

  8. Cambiaghi, D., Vetturi, D., Gadola, M., Manzo, L.: Semi-active strategies for racing car suspension control, paper no. 962553, university of brescia

    Google Scholar 

  9. Hacker, K., Kasprzak, E.M., Lewis, K.: Exploring the design tradeoffs and computational savings of executing vehicle simulations in a parallel computing environment. In: ASME Design Automation Conference (2000)

    Google Scholar 

  10. Floreano, D., Kato, T., Marocco, D., Sauser, E.: Coevolution of active vision and feature selection. Biological Cybernetics 90, 218–228 (2004)

    Article  MATH  Google Scholar 

  11. Hemmi, H., Tanev, I., Joachimczak, M., Shimohara, K.: Evolution of the driving styles of anticipatory agent remotely operating a scaled model of racing car. In: Procs. of the IEEE Congress on Evolutionary Computation, Edinburgh, 2-4 September 2005, vol. 2, pp. 1891–1898. IEEE, Los Alamitos (2005)

    Google Scholar 

  12. Niehaus, A., Stengel, R.F.: Probability-based decision making for automated highway driving. In: Vehicle Navigation and Information Systems Conference, vol. 2, pp. 1125–1136 (1991)

    Google Scholar 

  13. Pomerleau, D., Jochem, T.: Rapidly adapting machine vision for automated vehicle steering. IEEE Expert: Special Issue on Intelligent System and their Applications 11(2), 19–27 (1996); see also IEEE Intelligent Systems

    Article  Google Scholar 

  14. Pyeatt, L., Howe, A., Anderson, C.: Learning coordinated behaviors for control of a simulated robot (1996)

    Google Scholar 

  15. Siegle, G., Geisler, J., Laubenstein, F., Nagel, H.-H., Struck, G.: Autonomous driving on a road network. In: Procs. of the Intelligent Vehicles 1992 Symposium, Res. Center Commun., Robert Bosch GmbH, Hildesheim, pp. 403–408 (1992)

    Google Scholar 

  16. Sukthankar, R., Baluja, S., Hancock, J., Pomerleau, D., Thorpe, C.: Adaptive intelligent vehicle modules for tactical driving (1996)

    Google Scholar 

  17. Sukthankar, R., Pomerleau, D., Thorpe, C.: Shiva: Simulated highways for intelligent vehicle algorithms (1995)

    Google Scholar 

  18. Sun, Z., Bebis, G., Miller, R.: On-road vehicle detection using evolutionary gabor filter optimization (2005)

    Google Scholar 

  19. Tanev, I., Joachimczak, M., Shimohara, K.: Evolution of driving agent, remotely operating a scale model of a car with obstacle avoidance capabilities. In: Procs. of the Conference on Genetic and Evolutionary Computation, pp. 1785–1792. ACM, New York (2006)

    Google Scholar 

  20. Thorpe, C., Jochem, T., Pomerleau, D.: Automated highway and the free agent demonstration (1998)

    Google Scholar 

  21. Togelius, J., Lucas, S.: Arms races and car races. In: Runarsson, T.P., Beyer, H.-G., Burke, E.K., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 613–622. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  22. Togelius, J., Lucas, S.M.: Evolving robust and specialized car racing skills. In: Yen, G.G., et al. (eds.) Procs. IEEE Congress on Evolutionary Computation, Vancouver, BC, Canada, July 16-21, 2006, pp. 1187–1194. IEEE Press, Los Alamitos (2006)

    Google Scholar 

  23. Togelius, J., Simon, M.: Evolving controllers for simulated car racing. In: Procs. IEEE Congress on Evolutionary Computation (2005)

    Google Scholar 

  24. Wloch, K., Bentley, P.J.: Optimising the performance of a formula one car using a genetic algorithm. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 702–711. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Saez, Y., Perez, D., Sanjuan, O., Isasi, P. (2008). Driving Cars by Means of Genetic Algorithms. In: Rudolph, G., Jansen, T., Beume, N., Lucas, S., Poloni, C. (eds) Parallel Problem Solving from Nature – PPSN X. PPSN 2008. Lecture Notes in Computer Science, vol 5199. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87700-4_109

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87700-4_109

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87699-1

  • Online ISBN: 978-3-540-87700-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics