iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-540-87531-4_10
Non-uniform Boolean Constraint Satisfaction Problems with Cardinality Constraint | SpringerLink
Skip to main content

Non-uniform Boolean Constraint Satisfaction Problems with Cardinality Constraint

  • Conference paper
Computer Science Logic (CSL 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5213))

Included in the following conference series:

Abstract

We study the computational complexity of Boolean constraint satisfaction problems with cardinality constraint. A Galois connection between clones and co-clones has received a lot of attention in the context of complexity considerations for constraint satisfaction problems. This connection fails when considering constraint satisfaction problems that support in addition a cardinality constraint. We prove that a similar Galois connection, involving a weaker closure operator and partial polymorphisms, can be applied to such problems. Thus, we establish dichotomies for the decision as well as for the counting problems in Schaefer’s framework.

Supported by the DAAD postdoc program. Work done in part while the second and third authors worked at the University of Hannover.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Allender, E., Bauland, M., Immerman, N., Schnoor, H., Vollmer, H.: The complexity of satisfiability problems: Refining Schaefer’s theorem. In: Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp. 71–82. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  2. Böhler, E., Creignou, N., Reith, S., Vollmer, H.: Playing with Boolean blocks, part I: Post’s lattice with applications to complexity theory. ACM-SIGACT Newsletter 34(4), 38–52 (2003)

    Article  Google Scholar 

  3. Bauland, M., Hemaspaandra, E.: Isomorphic implication. In: Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp. 119–130. Springer, Heidelberg (2005); Theory of Computing Systems (to appear)

    Chapter  Google Scholar 

  4. Bläser, M., Heynen, T., Manthey, B.: Adding cardinality constraints to integer programs with applications to maximum satisfiability. Information Processing Letters 105, 194–198 (2008)

    Article  MathSciNet  Google Scholar 

  5. Böhler, E., Hemaspaandra, E., Reith, S., Vollmer, H.: Equivalence and isomorphism for Boolean constraint satisfaction. In: Bradfield, J.C. (ed.) CSL 2002 and EACSL 2002. LNCS, vol. 2471, pp. 412–426. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  6. Böhler, E., Hemaspaandra, E., Reith, S., Vollmer, H.: The complexity of Boolean constraint isomorphism. In: Diekert, V., Habib, M. (eds.) STACS 2004. LNCS, vol. 2996, pp. 164–175. Springer, Heidelberg (2004)

    Google Scholar 

  7. Bazgan, C., Karpinski, M.: On the complexity of global constraint satisfaction. In: Deng, X., Du, D. (eds.) ISAAC 2005. LNCS, vol. 3827, pp. 624–633. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  8. Bodnarchuk, V.G., Kalužnin, L.A., Kotov, V.N., Romov, B.A.: Galois theory for Post algebras I, II. Cybernetics 5, 243–252, 531–539 (1969)

    Article  Google Scholar 

  9. Böhler, E., Reith, S., Schnoor, H., Vollmer, H.: Bases for Boolean co-clones. Information Processing Letters 96, 59–66 (2005)

    Article  MathSciNet  Google Scholar 

  10. Creignou, N., Hermann, M.: Complexity of generalized satisfiability counting problems. Information and Computation 125, 1–12 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  11. Creignou, N., Kolaitis, P., Zanuttini, B.: Structure identification for Boolean relations and plain bases for co-clones. Journal of Computer and System Sciences (in press, 2008)

    Google Scholar 

  12. Creignou, N.: A dichotomy theorem for maximum generalized satisfiability problems. Journal of Computer and System Sciences 51, 511–522 (1995)

    Article  MathSciNet  Google Scholar 

  13. Creignou, N., Vollmer, H.: Boolean constraint satisfaction problems: when does Post’s lattice help? In: Creignou, N., Kolaitis, P.G., Vollmer, H. (eds.) Complexity of Constraints. Springer, Heidelberg (to appear, 2008)

    Google Scholar 

  14. Creignou, N., Zanuttini, B.: A complete classification of the complexity of propositional abduction. SIAM Journal on Computing 36(1), 207–229 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  15. Geiger, D.: Closed systems of functions and predicates. Pac. J. Math. 27(2), 228–250 (1968)

    MathSciNet  Google Scholar 

  16. Garey, M.R., Johnson, D.S.: Computers and Intractability, A Guide to the Theory of NP-Completeness. Freeman, New York (1979)

    MATH  Google Scholar 

  17. Jeavons, P.G.: On the algebraic structure of combinatorial problems. Theoretical Computer Science 200, 185–204 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kirousis, L.M., Kolaitis, P.G.: The complexity of minimal satisfiability problems. Information and Computation 187(1), 20–39 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  19. Khanna, S., Sudan, M., Trevisan, L., Williamson, D.P.: The approximability of constraint satisfaction problems. SIAM Journal on Computing 30, 1863–1920 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  20. Marx, D.: Parameterized complexity of constraint satisfaction problems. Computational Complexity 14(2), 153–183 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  21. Post, E.L.: The two-valued iterative systems of mathematical logic. Annals of Mathematical Studies 5, 1–122 (1941)

    MathSciNet  Google Scholar 

  22. Romov, B.A.: The algebras of partial functions and their invariants. Cybernetics and Systems Analysis 17(2), 157–167 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  23. Reith, S., Vollmer, H.: Optimal satisfiability for propositional calculi and constraint satisfaction problems. Information and Computation 186(1), 1–19 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  24. Schaefer, T.J.: The complexity of satisfiability problems. In: Proccedings 10th Symposium on Theory of Computing, pp. 216–226. ACM Press, New York (1978)

    Google Scholar 

  25. Schnoor, H., Schnoor, I.: Partial polymorphisms and constraint satisfaction problems. In: Creignou, N., Kolaitis, P.G., Vollmer, H. (eds.) Complexity of Constraints. Springer, Heidelberg (to appear, 2008)

    Google Scholar 

  26. Sviridenko, M.I.: Best possible approximation algorithm for MAX-SAT with cardinality constraint. Algorithmica 30(3), 398–405 (2001)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Michael Kaminski Simone Martini

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Creignou, N., Schnoor, H., Schnoor, I. (2008). Non-uniform Boolean Constraint Satisfaction Problems with Cardinality Constraint. In: Kaminski, M., Martini, S. (eds) Computer Science Logic. CSL 2008. Lecture Notes in Computer Science, vol 5213. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87531-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87531-4_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87530-7

  • Online ISBN: 978-3-540-87531-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics