iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-540-87442-3_142
A Mutation-Particle Swarm Algorithm for Error-Bounded Polygonal Approximation of Digital Curves | SpringerLink
Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5226))

Included in the following conference series:

Abstract

This paper presents a particle swarm optimization algorithm (PSO) to solve error-bounded polygonal approximation of digital curves. Different from the existing PSO-based methods for polygonal approximation problem, the mutation operators borrowed from genetic algorithms, are incorporated into the PSO, so we call it MPSO. This scheme can increase the diversity of the population and help the particles effectively escape from the local optimum. Experiments were performed on three commonly used benchmark curves to test the effectiveness of the proposed MPSO. The results manifest that the proposed MPSO has the higher performance than the existing GA-based methods and PSO methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Imai, H., Iri, M.: Polygonal Approximation of a Curve (Formulations and Algorithms. In: Toussaint, G.T. (ed.) Computational Morphology, pp. 71–86. North-Holland, Amsterdam (1988)

    Google Scholar 

  2. Sun, Y.N., Huang, S.C.: Genetic Algorithms for Error-bounded Polygonal Approximation. Int.J. Pattern Recognition and Artificial Intelligence. 14, 297–314 (2000)

    Google Scholar 

  3. Dunham, J.G.: Optimum Uniform Piecewise Linear Approximation of Planar Curves. IEEE Transactions on pattern Analysis and Machine Intelligence 8, 67–75 (1986)

    Article  Google Scholar 

  4. Sato, Y.: Piecewise Linear Approxiamtion of Planes by Perimeter Optimization. Pattern Recognition 25, 1535–1543 (1992)

    Article  Google Scholar 

  5. Perez, J.C., Vidal, E.: Optimum Polygonal Approximation of Digitized Curves. Pattern Recognition Letter 15, 743–750 (1994)

    Article  MATH  Google Scholar 

  6. Yin, P.Y.: Genetic Algorithms for Polygonal Approximation of Gigital Curves. Int. J. Pattern Recognition Artif. Intell. 13, 1–22 (1999)

    Article  Google Scholar 

  7. Yin, P.Y.: A New Method for Polygonal Approximation Using Genetic Algorithms. Pattern Recognition Letter. 19, 1017–1026 (1998)

    Article  MATH  Google Scholar 

  8. Huang, S.C., Sun, Y.N.: Polygonal Approximation Using Genetic Algorithms. Pattern Recognition 32, 1409–1420 (1999)

    Article  Google Scholar 

  9. Ho, S.Y., Chen, Y.C.: An Efficient Evolutionary Algorithm for Accurate Polygonal Approximation. Pattern Recognition 34, 2305–2317 (2001)

    Article  MATH  Google Scholar 

  10. Sarkar, B., Singh, L.K., Sarkar, D.: A Genetic Algorithm-based Approach for Detection of Significant Vertices for Polygonal Approximation of Digital Curves. International Journal of Image and Graphics 4, 223–239 (2004)

    Article  Google Scholar 

  11. Yin, P.Y.: Ant Colony Search Algorithms for Optimal Polygonal Approximation of Plane Curves. Pattern Recognition 36, 1783–1997 (2003)

    Article  MATH  Google Scholar 

  12. Yin, P.Y.: A Discrete Particle Swarm Algorithm for Optimal Polygonal Proximation of Digital Curves. Journal of Visual Communication and Image Representation 15, 241–260 (2004)

    Article  Google Scholar 

  13. Eberhart, R.C., Kennedy, J.: A New Optimizer Using Particle Swarm Theory. In: Proc. 6th Symp. Micro Machine and Human Science, Nagoya, Japan, pp. 39–43 (1995)

    Google Scholar 

  14. Eberhart, R.C., Kennedy, J.: A Discrete Binary Version of the Particle Swarm Algorithm. In: IEEE International Cofference on SMC, pp. 4104–4108 (1997)

    Google Scholar 

  15. Teh, H.C., Chin, R.T.: On Detection of Dominant Points on Digital Curves. IEEE Trans. Pattern Anal. Mach. Intell. 11, 859–872 (1989)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, B., Shu, HZ., Li, BS., Niu, ZM. (2008). A Mutation-Particle Swarm Algorithm for Error-Bounded Polygonal Approximation of Digital Curves. In: Huang, DS., Wunsch, D.C., Levine, D.S., Jo, KH. (eds) Advanced Intelligent Computing Theories and Applications. With Aspects of Theoretical and Methodological Issues. ICIC 2008. Lecture Notes in Computer Science, vol 5226. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87442-3_142

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87442-3_142

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87440-9

  • Online ISBN: 978-3-540-87442-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics