Abstract
The geographical threshold graph model is a random graph model with nodes distributed in a Euclidean space and edges assigned through a function of distance and node weights. We study this model and give conditions for the absence and existence of the giant component, as well as for connectivity.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bonato, A.: A survey of models of the web graph. In: López-Ortiz, A., Hamel, A.M. (eds.) CAAN 2004. LNCS, vol. 3405, pp. 159–172. Springer, Heidelberg (2005)
Abello, J., Pardalos, P.M., Resende, M.G.C. (eds.): Handbook of massive data sets. Kluwer Academic Publishers, Norwell, MA (2002)
Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power-law relationships of the internet topology. In: SIGCOMM 1999: Proceedings of the conference on Applications, technologies, architectures, and protocols for computer communication, pp. 251–262. ACM Press, New York (1999)
Kleinberg, J.M., Kumar, R., Raghavan, P., Rajagopalan, S., Tomkins, A.S.: The web as a graph: Measurements, models, and methods. In: Asano, T., Imai, H., Lee, D.T., Nakano, S.-i., Tokuyama, T. (eds.) COCOON 1999. LNCS, vol. 1627, pp. 1–17. Springer, Heidelberg (1999)
Kumar, R., Raghavan, P., Rajagopalan, S., Sivakumar, D., Tomkins, A., Upfal, E.: Stochastic models for the web graph. In: FOCS 2000: Proceedings of the 41st Annual Symposium on Foundations of Computer Science, Washington, DC, USA, p. 57. IEEE Computer Society, Los Alamitos (2000)
Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)
Aiello, W., Chung, F., Lu, L.: A random graph model for massive graphs. In: STOC 2000: Proceedings of the thirty-second annual ACM symposium on Theory of computing, pp. 171–180. ACM Press, New York (2000)
Bollobás, B., Riordan, O., Spencer, J., Tusnády, G.: The degree sequence of a scale-free random graph process. Random Struct. Algorithms 18, 279–290 (2001)
Cooper, C., Frieze, A.M.: A general model of undirected Web graphs. In: Meyer auf der Heide, F. (ed.) ESA 2001. LNCS, vol. 2161, pp. 500–511. Springer, Heidelberg (2001)
Bradonjić, M., Kong, J.: Wireless Ad Hoc Networks with Tunable Topology. To appear in Proceedings of the 45th Annual Allerton Conference on Communication, Control and Computing (2007)
Erdős, P., Rényi, A.: On random graphs. Publ. Math. Inst. Hungar. Acad. Sci. (1959)
Erdős, P., Rényi, A.: On the evolution of random graphs. Publ. Math. Inst. Hungar. Acad. Sci. (1960)
Penrose, M.D.: Random Geometric Graphs. Oxford University Press, Oxford (2003)
Mahadev, N.V.R., Peled, U.N.: Threshold graphs and related topics. Annals of discrete mathematics, vol. 56. Elsevier, New York (1995)
Hagberg, A., Swart, P.J., Schult, D.A.: Designing threshold networks with given structural and dynamical properties. Phys. Rev. E 74, 056116 (2006)
Masuda, N., Miwa, H., Konno, N.: Geographical threshold graphs with small-world and scale-free properties. Physical Review E 71, 036108 (2005)
Alon, N., Spencer, J.H.: The probabilistic method, 2nd edn. John Wiley & Sons, Inc., New York (2000)
Gupta, P., Kumar, P.R.: Critical power for asymptotic connectivity. In: Proceedings of the 37th IEEE Conference on Decision and Control, vol. 1, pp. 1106–1110 (1998)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bradonjić, M., Hagberg, A., Percus, A.G. (2007). Giant Component and Connectivity in Geographical Threshold Graphs. In: Bonato, A., Chung, F.R.K. (eds) Algorithms and Models for the Web-Graph. WAW 2007. Lecture Notes in Computer Science, vol 4863. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77004-6_18
Download citation
DOI: https://doi.org/10.1007/978-3-540-77004-6_18
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-77003-9
Online ISBN: 978-3-540-77004-6
eBook Packages: Computer ScienceComputer Science (R0)