iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-540-76386-4_16
Localized Content-Based Image Retrieval Using Semi-Supervised Multiple Instance Learning | SpringerLink
Skip to main content

Localized Content-Based Image Retrieval Using Semi-Supervised Multiple Instance Learning

  • Conference paper
Computer Vision – ACCV 2007 (ACCV 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4843))

Included in the following conference series:

Abstract

In this paper, we propose a Semi-Supervised Multiple-Instance Learning (SSMIL) algorithm, and apply it to Localized Content-Based Image Retrieval(LCBIR), where the goal is to rank all the images in the database, according to the object that users want to retrieve. SSMIL treats LCBIR as a Semi-Supervised Problem and utilize the unlabeled pictures to help improve the retrieval performance. The comparison result of SSMIL with several state-of-art algorithms is promising.

The work was supported by the National Science Foundation of China (60475001, 60605002).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Dietterich, T.G., Lathrop, R.H., Lozano-Përez, T.: Solving the Multiple Instance Problem with Axis-Parallel Rectangles. Artificial Inteligence 1446, 1–8 (1998)

    Google Scholar 

  2. Maron, O., Lozano-Përez, T.: A Framework for Multiple-Instance Learning. Advances in Neural Information Processing System 10, 570–576 (1998)

    Google Scholar 

  3. Maron, O., Ratan, A.L.: Multiple-Instance Learning for Natural Scene Classification. In: Proc. 15th Int’l. Conf. Machine Learning, pp. 341–349 (1998)

    Google Scholar 

  4. Chen, Y., Wang, J.Z.: Image Categorization by Learning and Reasoning with Regions. J. Machine Learning Research 5, 913–939 (2004)

    Google Scholar 

  5. Chen, Y., Bi, J., Wang, J.Z.: MILES: Multiple-Instance Learning via Embedded Instance Selection. IEEE Transatctions on Pattern Analysis and Machine Intelligence 28(12) (2006)

    Google Scholar 

  6. Zhang, Q., Goldman, S.: EM-DD: An improved Multiple-Instance Learning. In: Advances in Neural Information Processing System, vol. 14, pp. 1073–1080 (2002)

    Google Scholar 

  7. Rahmani, R., Goldman, S., Zhang, H., et al.: Localized Content-Based Image Retrieval. In: Proceedings of ACM Workshop on Multimedia Image Retrieval, ACM Press, New York (2005)

    Google Scholar 

  8. Rahmani, R., Goldman, S.: MISSL: Multiple-Instance Semi-Supervised Learning. In: Proc. 23th Int’l. Conf. Machine Learning, pp. 705–712 (2006)

    Google Scholar 

  9. Cheung, P.-M., Kwok, J.T.: A Regularization Framework for Multiple-Instance Learning. In: ICML (2006)

    Google Scholar 

  10. Andrews, S., Tsochantaridis, I., Hofmann, T.: Support Vector Machines for Multiple-Instance Learning. In: Advances in Neural Information Processing System, vol. 15, pp. 561–568 (2003)

    Google Scholar 

  11. Andrews, S., Hofmann, T.: Multiple Instance Learning via Disjunctive Programming Boosting. In: Advances in Neural Information Processing System, vol. 16, pp. 65–72 (2004)

    Google Scholar 

  12. Joachims, T.: Transductive Inference for Text Classification using Support Vector Machine. In: Proc. 16th Int’l. Conf. Machine Learning, pp. 200–209 (1999)

    Google Scholar 

  13. Bennett, K.P., Demiriz, A.: Semi-supervised sup- port vector machines. In: Advances in Neural Information Processing System, vol. 11, pp. 368–374 (1999)

    Google Scholar 

  14. Zhu, X.: Semi-supervised learning literature survey, in Technical Report 1530, Department of Computer Sci- ences, University of Wisconsin at Madison (2006)

    Google Scholar 

  15. Zhou, Z.H., Zhang, M.L.: Multi-Instance Multi-Label Learning with Application to Scene Classification. In: Advances in Neural Information Processing System (2006)

    Google Scholar 

  16. Csurka, G., Bray, C., Dance, C., Fan, L.: Visual Categorization with Bags of Keypoints. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 59–74. Springer, Heidelberg (2004)

    Google Scholar 

  17. http://john.cs.olemiss.edu/~ychen/MILES.html

  18. http://people.cs.uchicago.edu/~vikass/svmlin.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Yasushi Yagi Sing Bing Kang In So Kweon Hongbin Zha

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, D., Shi, Z., Song, Y., Zhang, C. (2007). Localized Content-Based Image Retrieval Using Semi-Supervised Multiple Instance Learning. In: Yagi, Y., Kang, S.B., Kweon, I.S., Zha, H. (eds) Computer Vision – ACCV 2007. ACCV 2007. Lecture Notes in Computer Science, vol 4843. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76386-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-76386-4_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76385-7

  • Online ISBN: 978-3-540-76386-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics