iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-540-74690-4_1
Generalization Error of Automatic Relevance Determination | SpringerLink
Skip to main content

Generalization Error of Automatic Relevance Determination

  • Conference paper
Artificial Neural Networks – ICANN 2007 (ICANN 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4668))

Included in the following conference series:

  • 2749 Accesses

Abstract

The automatic relevance determination (ARD) shows good performance in many applications. Recently, it has been applied to brain current estimation with the variational method. Although people who use the ARD tend to pay attention to one benefit of the ARD, sparsity, we, in this paper, focus on another benefit, generalization. In this paper, we clarify the generalization error of the ARD in the case that a class of prior distributions is used, and show that good generalization is caused by singularities of the ARD. Sparsity is not observed in that case, however, the mechanism that the singularities provide good generalization implies the mechanism that they also provide sparsity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. MacKay, D.J.C.: Bayesian Non-linear Modeling for the Energy Prediction Competition. ASHRAE Transactions 100, 1053–1062 (1994)

    Google Scholar 

  2. Neal, R.M.: Bayesian Learning for Neural Networks. Springer, Heidelberg (1996)

    MATH  Google Scholar 

  3. Hinton, G.E., van Camp, D.: Keeping Neural Networks Simple by Minimizing the Description Length of the Weights. In: Proc. of COLT, pp. 5–13 (1993)

    Google Scholar 

  4. Attias, H.: Inferring Parameters and Structure of Latent Variable Models by Variational Bayes. In: Proc. of UAI (1999)

    Google Scholar 

  5. Sato, M., Yoshioka, T., Kajihara, S., Toyama, K., Goda, N., Doya, K., Kawato, M.: Hierarchical Bayesian Estimation for MEG inverse problem. Neuro Image 23, 806–826 (2004)

    Google Scholar 

  6. Osako, M., Yamashita, O., Hiroe, N., Sato, M.: Verification of Hierarchical Bayesian Estimation Combining MEG and fMRI: A Motor Task Analysis (in Japanese). In: Technical Report of IEICE, Tokyo, Japan, vol. NC2006-130, pp. 73–78 (2007)

    Google Scholar 

  7. Wipf, D., Ramirez, R., Palmer, J., Makeig, S., Rao, B.: Analysis of Empirical Bayesian Methods for Neuroelectromagnetic Source Localization. In: Advances in NIPS, vol. 19 (2006)

    Google Scholar 

  8. Watanabe, S.: Algebraic Analysis for Nonidentifiable Learning Machines. Neural Computation 13, 899–933 (2001)

    Article  MATH  Google Scholar 

  9. Nakajima, S., Watanabe, S.: Variational Bayes Solution of Linear Neural Networks and its Generalization Performance. Neural Computation 19, 1112–1153 (2007)

    Article  MATH  Google Scholar 

  10. James, W., Stein, C.: Estimation with Quadratic Loss. In: Proc. of the 4th Berkeley Symp. on Math. Stat. and Prob., pp. 361–379 (1961)

    Google Scholar 

  11. Efron, B., Morris, C.: Stein’s Estimation Rule and its Competitors—an Empirical Bayes Approach. J. of Am. Stat. Assoc. 68, 117–130 (1973)

    Article  MATH  Google Scholar 

  12. Nakajima, S., Watanabe, S.: Analytic Solution of Hierarchical Variational Bayes in Linear Inverse Problem. In: Kollias, S., Stafylopatis, A., Duch, W., Oja, E. (eds.) ICANN 2006. LNCS, vol. 4132, pp. 240–249. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  13. Sato, M.: Online Model Selection Based on the Variational Bayes. Neural Computation 13, 1649–1681 (2001)

    Article  MATH  Google Scholar 

  14. Hamalainen, M., Hari, R., Ilmoniemi, R.J, Knuutila, J., Lounasmaa, O.V.: Magnetoencephalography — Theory, Instrumentation, and Applications to Noninvasive Studies of the Working Human Brain. Rev. Modern Phys. 65, 413–497 (1993)

    Article  Google Scholar 

  15. Blankertz, B., Dornhege, G., Krauledat, M., Curio, G., Muller, K.R.: The Non-invasive Berlin Brain-Computer Interface: Fast Acquisition of Effective Performance in Untrained Subjects (2007) (to appear in Neuro Image)

    Google Scholar 

  16. Watanabe, S., Amari, S.: Learning Coefficients of Layered Models When the True Distribution Mismatches the Singularities. Neural Computation 15, 1013–1033 (2003)

    Article  MATH  Google Scholar 

  17. Watanabe, S.: Algebraic Information Geometry for Learning Machines with Singularities. In: Advances in NIPS, vol. 13, pp. 329–336 (2001)

    Google Scholar 

  18. Stein, C.: Estimation of the Mean of a Multivariate Normal Distribution. Annals of Statistics 9, 1135–1151 (1981)

    MATH  Google Scholar 

  19. Wang, B., Titterington, D.M.: Convergence and Asymptotic Normality of Variational Bayesian Approximations for Exponential Family Models with Missing Values. In: Proc. of UAI, Banff, Canada, pp. 577–584 (2004)

    Google Scholar 

  20. Watanabe, K., Watanabe, S.: Stochastic Complexities of Gaussian Mixtures in Variational Bayesian Approximation. Journal of Machine Learning Research 7, 625–644 (2006)

    Google Scholar 

  21. Nakajima, S., Watanabe, S.: Generalization Error and Free Energy of Variational Bayes Approach of Linear Neural Networks. In: Proc. of ICONIP, Taipei, Taiwan, pp. 55–60 (2005)

    Google Scholar 

  22. Barber, D., Chiappa, S.: Unified Inference for Variational Bayesian Linear Gaussian State-Space Models. In: Advances in NIPS, vol. 19 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Joaquim Marques de Sá Luís A. Alexandre Włodzisław Duch Danilo Mandic

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nakajima, S., Watanabe, S. (2007). Generalization Error of Automatic Relevance Determination. In: de Sá, J.M., Alexandre, L.A., Duch, W., Mandic, D. (eds) Artificial Neural Networks – ICANN 2007. ICANN 2007. Lecture Notes in Computer Science, vol 4668. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74690-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74690-4_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74689-8

  • Online ISBN: 978-3-540-74690-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics