iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-540-74494-8_55
Sparse Component Analysis in Presence of Noise Using an Iterative EM-MAP Algorithm | SpringerLink
Skip to main content

Sparse Component Analysis in Presence of Noise Using an Iterative EM-MAP Algorithm

  • Conference paper
Independent Component Analysis and Signal Separation (ICA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4666))

Abstract

In this paper, a new algorithm for source recovery in under-determined Sparse Component Analysis (SCA) or atomic decomposition on over-complete dictionaries is presented in the noisy case. The algorithm is essentially a method for obtaining sufficiently sparse solutions of under-determined systems of linear equations with additive Gaussian noise. The method is based on iterative Expectation-Maximization of a Maximum A Posteriori estimation of sources (EM-MAP) and a new steepest-descent method is introduced for the optimization in the M-step. The solution obtained by the proposed algorithm is compared to the minimum ℓ1-norm solution achieved by Linear Programming (LP). It is experimentally shown that the proposed algorithm is about one order of magnitude faster than the interior-point LP method, while providing better accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Zibulevsky, M., Pearlmutter, B.A.: Blind source separation by sparse decomposition in a signal dictionary. Neural Computation 13(4), 863–882 (2001)

    Article  MATH  Google Scholar 

  2. Gribonval, R., Lesage, S.: A survey of sparse component analysis for blind source separation: principles, perspectives, and new challanges. In: Proceeding of ESANN 2006, pp. 323–330 (2006)

    Google Scholar 

  3. Davies, M., Mitianoudis, N.: Simple mixture model for sparse overcomplete ICA. In: Puntonet, C.G., Prieto, A.G. (eds.) ICA 2004. LNCS, vol. 3195, pp. 35–43. Springer, Heidelberg (2004)

    Google Scholar 

  4. Li, Y.Q., Amari, S., Cichocki, A., Ho, D.W.C, Xie, S.: Underdetermined blind source separation based on sparse representation. IEEE Transaction on Signal Processing 54(2), 423–437 (2006)

    Article  Google Scholar 

  5. Zayyani, H., Babaie-Zadeh, M., Jutten, C.: Source estimation in noisy sparse component analysis. In: DSP 2007 (accepted, 2007)

    Google Scholar 

  6. Balan, R., Rosca, J.: Source separation using sparse discrete prior models. In: Proceeding of ICASSP 2006 (2006)

    Google Scholar 

  7. Donoho, D.L.: For most large underdetermined systems of linear equations the minimal ℓ1 norm is also the sparsest solution. Technical Report (2004)

    Google Scholar 

  8. Donoho, D.L., Elad, M., Temlyakov, V.: Stable recovery of sparse overcomplete representations in the presence of noise. IEEE Transaction on Information theory 52(1), 6–18 (2006)

    Article  MathSciNet  Google Scholar 

  9. Mohimani, G.H, Babaie-Zadeh, M., Jutten, C.: Fast sparse representation based on smoothed ℓ0 norm. In: ICA 2007 (accepted, 2007)

    Google Scholar 

  10. Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM Journal on Scientific Computing 20(1), 31–61 (1999)

    MathSciNet  Google Scholar 

  11. Mallat, S., Zhang, Z.: Matching pursuit with time-frequency dictionaries. IEEE Transaction on Signal Processing 41(12), 3397–3415 (1993)

    Article  MATH  Google Scholar 

  12. Djafari, A.M.: Bayesian source separation: beyond PCA and ICA. In: Proceeding of ESANN 2006 (2006)

    Google Scholar 

  13. Anderson, B.D., Moor, J.B.: Optimal filtering, 2nd edn. Prentice Hall, Englewood Cliffs (1979)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Mike E. Davies Christopher J. James Samer A. Abdallah Mark D Plumbley

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zayyani, H., Babaie-Zadeh, M., Mohimani, G.H., Jutten, C. (2007). Sparse Component Analysis in Presence of Noise Using an Iterative EM-MAP Algorithm. In: Davies, M.E., James, C.J., Abdallah, S.A., Plumbley, M.D. (eds) Independent Component Analysis and Signal Separation. ICA 2007. Lecture Notes in Computer Science, vol 4666. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74494-8_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74494-8_55

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74493-1

  • Online ISBN: 978-3-540-74494-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics