iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-540-74494-8_49
Fast Sparse Representation Based on Smoothed ℓ0 Norm | SpringerLink
Skip to main content

Fast Sparse Representation Based on Smoothed ℓ0 Norm

  • Conference paper
Independent Component Analysis and Signal Separation (ICA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4666))

Abstract

In this paper, a new algorithm for Sparse Component Analysis (SCA) or atomic decomposition on over-complete dictionaries is presented. The algorithm is essentially a method for obtaining sufficiently sparse solutions of underdetermined systems of linear equations. The solution obtained by the proposed algorithm is compared with the minimum ℓ1-norm solution achieved by Linear Programming (LP). It is experimentally shown that the proposed algorithm is about two orders of magnitude faster than the state-of-the-art ℓ1-magic, while providing the same (or better) accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Donoho, D.L.: For most large underdetermined systems of linear equations the minimal l1-norm solution is also the sparsest solution, Tech. Rep. (2004)

    Google Scholar 

  2. Bofill, P., Zibulevsky, M.: Underdetermined blind source separation using sparse representations. Signal Processing 81, 2353–2362 (2001)

    Article  MATH  Google Scholar 

  3. Gribonval, R., Lesage, S.: A survey of sparse component analysis for blind source separation: principles, perspectives, and new challenges. In: Proceedings of ESANN 2006, April 2006, pp. 323–330 (2006)

    Google Scholar 

  4. Donoho, D.L., Elad, M., Temlyakov, V.: Stable recovery of sparse overcomplete representations in the presence of noise. IEEE Trans. Info. Theory 52(1), 6–18 (2006)

    Article  MathSciNet  Google Scholar 

  5. Movahedi, F., Mohimani, G.H., Babaie-Zadeh, M., Jutten, C.: Estimating the mixing matrix in sparse component analysis (SCA) based on partial k-dimensional subspace clustering, Neurocomputing (sumitted)

    Google Scholar 

  6. Washizawa, Y., Cichocki, A.: on-line k-plane clustering learning algorithm for sparse comopnent analysis. In: Proceedinds of ICASSP 2006, Toulouse (France), pp. 681–684 (2006)

    Google Scholar 

  7. Li, Y.Q., Cichocki, A., Amari, S.: Analysis of sparse representation and blind source separation. Neural Computation 16(6), 1193–1234 (2004)

    Article  MATH  Google Scholar 

  8. Zibulevsky, M., Pearlmutter, B.A.: Blind source separation by sparse decomposition in a signal dictionary. Neural Computation 13(4), 863–882 (2001)

    Article  MATH  Google Scholar 

  9. Georgiev, P.G., Theis, F.J., Cichocki, A.: Blind source separation and sparse component analysis for over-complete mixtures. In: Proceedings of ICASSP 2004, Montreal (Canada), May 2004, pp. 493–496 (2004)

    Google Scholar 

  10. Li, Y., Cichocki, A., Amari, S.: Sparse component analysis for blind source separation with less sensors than sources. In: ICA 2003, pp. 89–94 (2003)

    Google Scholar 

  11. Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM Journal on Scientific Computing 20(1), 33–61 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  12. Donoho, D.L., Huo, X.: Uncertainty principles and ideal atomic decomposition. IEEE Trans. Inform. Theory 47(7), 2845–2862 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. Elad, M., Bruckstein, A.: A generalized uncertainty principle and sparse representations in pairs of bases. IEEE Trans. Inform. Theory 48(9), 2558–2567 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  14. Candes, E., Romberg, J.: ℓ1-Magic: Recovery of Sparse Signals via Convex Programming, URL: www.acm.caltech.edu/l1magic/downloads/l1magic.pdf

  15. Mallat, S., Zhang, Z.: Matching pursuits with time-frequency dictionaries. IEEE Trans. on Signal Proc. 41(12), 3397–3415 (1993)

    Article  MATH  Google Scholar 

  16. Krstulovic, S., Gribonval, R.: MPTK: Matching pursuit made tractable. In: ICASSP 2006 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Mike E. Davies Christopher J. James Samer A. Abdallah Mark D Plumbley

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mohimani, G.H., Babaie-Zadeh, M., Jutten, C. (2007). Fast Sparse Representation Based on Smoothed ℓ0 Norm. In: Davies, M.E., James, C.J., Abdallah, S.A., Plumbley, M.D. (eds) Independent Component Analysis and Signal Separation. ICA 2007. Lecture Notes in Computer Science, vol 4666. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74494-8_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74494-8_49

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74493-1

  • Online ISBN: 978-3-540-74494-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics