Abstract
In this paper, a new algorithm for Sparse Component Analysis (SCA) or atomic decomposition on over-complete dictionaries is presented. The algorithm is essentially a method for obtaining sufficiently sparse solutions of underdetermined systems of linear equations. The solution obtained by the proposed algorithm is compared with the minimum ℓ1-norm solution achieved by Linear Programming (LP). It is experimentally shown that the proposed algorithm is about two orders of magnitude faster than the state-of-the-art ℓ1-magic, while providing the same (or better) accuracy.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Donoho, D.L.: For most large underdetermined systems of linear equations the minimal l1-norm solution is also the sparsest solution, Tech. Rep. (2004)
Bofill, P., Zibulevsky, M.: Underdetermined blind source separation using sparse representations. Signal Processing 81, 2353–2362 (2001)
Gribonval, R., Lesage, S.: A survey of sparse component analysis for blind source separation: principles, perspectives, and new challenges. In: Proceedings of ESANN 2006, April 2006, pp. 323–330 (2006)
Donoho, D.L., Elad, M., Temlyakov, V.: Stable recovery of sparse overcomplete representations in the presence of noise. IEEE Trans. Info. Theory 52(1), 6–18 (2006)
Movahedi, F., Mohimani, G.H., Babaie-Zadeh, M., Jutten, C.: Estimating the mixing matrix in sparse component analysis (SCA) based on partial k-dimensional subspace clustering, Neurocomputing (sumitted)
Washizawa, Y., Cichocki, A.: on-line k-plane clustering learning algorithm for sparse comopnent analysis. In: Proceedinds of ICASSP 2006, Toulouse (France), pp. 681–684 (2006)
Li, Y.Q., Cichocki, A., Amari, S.: Analysis of sparse representation and blind source separation. Neural Computation 16(6), 1193–1234 (2004)
Zibulevsky, M., Pearlmutter, B.A.: Blind source separation by sparse decomposition in a signal dictionary. Neural Computation 13(4), 863–882 (2001)
Georgiev, P.G., Theis, F.J., Cichocki, A.: Blind source separation and sparse component analysis for over-complete mixtures. In: Proceedings of ICASSP 2004, Montreal (Canada), May 2004, pp. 493–496 (2004)
Li, Y., Cichocki, A., Amari, S.: Sparse component analysis for blind source separation with less sensors than sources. In: ICA 2003, pp. 89–94 (2003)
Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM Journal on Scientific Computing 20(1), 33–61 (1999)
Donoho, D.L., Huo, X.: Uncertainty principles and ideal atomic decomposition. IEEE Trans. Inform. Theory 47(7), 2845–2862 (2001)
Elad, M., Bruckstein, A.: A generalized uncertainty principle and sparse representations in pairs of bases. IEEE Trans. Inform. Theory 48(9), 2558–2567 (2002)
Candes, E., Romberg, J.: ℓ1-Magic: Recovery of Sparse Signals via Convex Programming, URL: www.acm.caltech.edu/l1magic/downloads/l1magic.pdf
Mallat, S., Zhang, Z.: Matching pursuits with time-frequency dictionaries. IEEE Trans. on Signal Proc. 41(12), 3397–3415 (1993)
Krstulovic, S., Gribonval, R.: MPTK: Matching pursuit made tractable. In: ICASSP 2006 (2006)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Mohimani, G.H., Babaie-Zadeh, M., Jutten, C. (2007). Fast Sparse Representation Based on Smoothed ℓ0 Norm. In: Davies, M.E., James, C.J., Abdallah, S.A., Plumbley, M.D. (eds) Independent Component Analysis and Signal Separation. ICA 2007. Lecture Notes in Computer Science, vol 4666. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74494-8_49
Download citation
DOI: https://doi.org/10.1007/978-3-540-74494-8_49
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-74493-1
Online ISBN: 978-3-540-74494-8
eBook Packages: Computer ScienceComputer Science (R0)