iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-540-74260-9_15
Landmark-Based Non-rigid Registration Via Graph Cuts | SpringerLink
Skip to main content

Landmark-Based Non-rigid Registration Via Graph Cuts

  • Conference paper
Image Analysis and Recognition (ICIAR 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4633))

Included in the following conference series:

Abstract

This paper presents an approach based on graph cuts initially used for motion segmentation that is being applied to the non-rigid registration problem. The main contribution of our method is the formulation of landmarks in the graph cut minimization framework. In the graph cut method, we add a penalty cost based on landmarks to the data energy. In the presence of a landmark, we adjust the T-link weights to cut strategic links. Our formulation also allows the spread of a landmark influence to its neighborhood. We first show with synthetic images that minimization with graph cuts can indeed be used for non-rigid registration and show how landmarks can guide the minimization process towards a customized solution. We later use this method with real images and show how landmarks can successfully guide the registration of a coronary angiogram.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Crum, W.R., Hartkens, T., Hill, D.L.: Non-rigid image registration: theory and practice. The British Journal of Radiology 77(2), 140–153 (2004)

    Article  Google Scholar 

  2. Maintz, J.B., Viergever, M.A.: A survey of medical image registration. Medical Image Analysis 2(1), 1–36 (1998)

    Article  Google Scholar 

  3. McInerney, T., Terzopoulos, D.: Deformable models in medical image analysis: a survey. Medical Image Analysis 1(2), 91–108 (1996)

    Article  Google Scholar 

  4. Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L., Leach, M.O., Hawkes, D.J.: Nonrigid registration using free-form deformations: application to breast MR images. IEEE Transactions on Medical Imaging 18(8), 712–721 (1999)

    Article  Google Scholar 

  5. Bookstein, F.L.: Principal warps: thin-plate splines and the decomposition of deformations. IEEE Transactions on Pattern Analysis and Machine Intelligence 11(6), 567–585 (1989)

    Article  MATH  Google Scholar 

  6. Christensen, G.E., Miller, M.I., Vannier, M.W., Grenander, U.: Individualizing neuroanatomical atlases using a massively parallel computer. Computer 29(1), 32–38 (1996)

    Article  Google Scholar 

  7. Horn, B., Schunck, B.: Determining optical flow. Artificial Intelligence 17(1-3), 185–203 (1981)

    Article  Google Scholar 

  8. Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: IJCAI 1981. Proceedings of the Seventh International Joint Conference on Artifical Intelligence, Vancouver, Canada, pp. 674–679 (1981)

    Google Scholar 

  9. Boykov, Y., Veksler, O., Zabih, R.: Markov random fields with efficient approximations. In: CVPR 1998. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Santa Barbara, CA, June 1998, pp. 648–655. IEEE Computer Society Press, Los Alamitos (1998)

    Google Scholar 

  10. Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. In: Energy Minimization Methods in Computer Vision and Pattern Recognition, pp. 359–374 (2001)

    Google Scholar 

  11. Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(9), 1124–1137 (2004)

    Article  Google Scholar 

  12. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(11), 1222–1239 (2001)

    Article  Google Scholar 

  13. Kolmogorov, V., Zabih, R.: Computing visual correspondence with occlusions via graph cuts. In: ICCV 2001. Proceedings of the Eighth IEEE International Conference on Computer Vision, Vancouver, Canada, July 2001, vol. 2, pp. 508–515. IEEE Computer Society Press, Los Alamitos (2001)

    Google Scholar 

  14. Shah, M., Xiao, J.: Motion layer extraction in the presence of occlusion using graph cuts. IEEE Transactions on Pattern Analysis Machine Intelligence 27(10), 1644–1659 (2005)

    Article  Google Scholar 

  15. Bhat, P., Zheng, K.C., Snavely, N., Agarwala, A., Agrawala, M., Cohen, M.F., Curless, B.: Piecewise image registration in the presence of multiple large motions. In: CVPR 2006. Proceedings of the IEEE Conference on Computer Vision and Pattern, New York, June 2006, vol. 2, pp. 2491–2497. IEEE Computer Society Press, Los Alamitos (2006)

    Google Scholar 

  16. Kim, J., Kolmogorov, V., Zabih, R.: Visual correspondence using energy minimization and mutual information. In: ICCV 2003. Proceedings of the Ninth IEEE International Conference on Computer Vision, Nice, France, October 2003, vol. 2, pp. 1033–1040. IEEE Computer Society Press, Los Alamitos (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Mohamed Kamel Aurélio Campilho

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lombaert, H., Sun, Y., Cheriet, F. (2007). Landmark-Based Non-rigid Registration Via Graph Cuts. In: Kamel, M., Campilho, A. (eds) Image Analysis and Recognition. ICIAR 2007. Lecture Notes in Computer Science, vol 4633. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74260-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74260-9_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74258-6

  • Online ISBN: 978-3-540-74260-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics