Abstract
This paper presents an approach based on graph cuts initially used for motion segmentation that is being applied to the non-rigid registration problem. The main contribution of our method is the formulation of landmarks in the graph cut minimization framework. In the graph cut method, we add a penalty cost based on landmarks to the data energy. In the presence of a landmark, we adjust the T-link weights to cut strategic links. Our formulation also allows the spread of a landmark influence to its neighborhood. We first show with synthetic images that minimization with graph cuts can indeed be used for non-rigid registration and show how landmarks can guide the minimization process towards a customized solution. We later use this method with real images and show how landmarks can successfully guide the registration of a coronary angiogram.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Crum, W.R., Hartkens, T., Hill, D.L.: Non-rigid image registration: theory and practice. The British Journal of Radiology 77(2), 140–153 (2004)
Maintz, J.B., Viergever, M.A.: A survey of medical image registration. Medical Image Analysis 2(1), 1–36 (1998)
McInerney, T., Terzopoulos, D.: Deformable models in medical image analysis: a survey. Medical Image Analysis 1(2), 91–108 (1996)
Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L., Leach, M.O., Hawkes, D.J.: Nonrigid registration using free-form deformations: application to breast MR images. IEEE Transactions on Medical Imaging 18(8), 712–721 (1999)
Bookstein, F.L.: Principal warps: thin-plate splines and the decomposition of deformations. IEEE Transactions on Pattern Analysis and Machine Intelligence 11(6), 567–585 (1989)
Christensen, G.E., Miller, M.I., Vannier, M.W., Grenander, U.: Individualizing neuroanatomical atlases using a massively parallel computer. Computer 29(1), 32–38 (1996)
Horn, B., Schunck, B.: Determining optical flow. Artificial Intelligence 17(1-3), 185–203 (1981)
Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: IJCAI 1981. Proceedings of the Seventh International Joint Conference on Artifical Intelligence, Vancouver, Canada, pp. 674–679 (1981)
Boykov, Y., Veksler, O., Zabih, R.: Markov random fields with efficient approximations. In: CVPR 1998. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Santa Barbara, CA, June 1998, pp. 648–655. IEEE Computer Society Press, Los Alamitos (1998)
Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. In: Energy Minimization Methods in Computer Vision and Pattern Recognition, pp. 359–374 (2001)
Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(9), 1124–1137 (2004)
Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(11), 1222–1239 (2001)
Kolmogorov, V., Zabih, R.: Computing visual correspondence with occlusions via graph cuts. In: ICCV 2001. Proceedings of the Eighth IEEE International Conference on Computer Vision, Vancouver, Canada, July 2001, vol. 2, pp. 508–515. IEEE Computer Society Press, Los Alamitos (2001)
Shah, M., Xiao, J.: Motion layer extraction in the presence of occlusion using graph cuts. IEEE Transactions on Pattern Analysis Machine Intelligence 27(10), 1644–1659 (2005)
Bhat, P., Zheng, K.C., Snavely, N., Agarwala, A., Agrawala, M., Cohen, M.F., Curless, B.: Piecewise image registration in the presence of multiple large motions. In: CVPR 2006. Proceedings of the IEEE Conference on Computer Vision and Pattern, New York, June 2006, vol. 2, pp. 2491–2497. IEEE Computer Society Press, Los Alamitos (2006)
Kim, J., Kolmogorov, V., Zabih, R.: Visual correspondence using energy minimization and mutual information. In: ICCV 2003. Proceedings of the Ninth IEEE International Conference on Computer Vision, Nice, France, October 2003, vol. 2, pp. 1033–1040. IEEE Computer Society Press, Los Alamitos (2003)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lombaert, H., Sun, Y., Cheriet, F. (2007). Landmark-Based Non-rigid Registration Via Graph Cuts. In: Kamel, M., Campilho, A. (eds) Image Analysis and Recognition. ICIAR 2007. Lecture Notes in Computer Science, vol 4633. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74260-9_15
Download citation
DOI: https://doi.org/10.1007/978-3-540-74260-9_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-74258-6
Online ISBN: 978-3-540-74260-9
eBook Packages: Computer ScienceComputer Science (R0)