iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-540-74208-1_42
On Finding Frequent Elements in a Data Stream | SpringerLink
Skip to main content

Abstract

We consider the problem of finding the most frequent elements in the data stream model; this problem has a linear lower bound in terms of the input length. In this paper we obtain sharper space lower bounds for this problem, not in terms of the length of the input as is traditionally done, but in terms of the quantitative properties (in this case, distribution of the element frequencies) of the input per se; this lower bound matches the best known upper bound for this problem. These bounds suggest the study of data stream algorithms through an instance-specific lens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Muthukrishnan, S.: Data Streams: Algorithms and Applications. Now Publishers (2005)

    Google Scholar 

  2. Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and issues in data stream systems. In: Proceedings of the 21st ACM Symposium on Principles of Databases Systems, pp. 1–16. ACM Press, New York (2002)

    Google Scholar 

  3. Alon, N., Matias, Y., Szegedy, M.: The space complexity of approximating the frequency moments. Journal of Computer and System Sciences 58(1), 137–147 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Gibbons, P., Matias, Y.: New sampling-based summary statistics for improving approximate query answers. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, pp. 331–342. ACM Press, New York (1998)

    Google Scholar 

  5. Gibbons, P., Matias, Y.: Synposis data structures for massive data sets. In: Proceedings of 10th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 909–910. ACM Press, New York (1999)

    Google Scholar 

  6. Fang, M., Shivakumar, N., Garcia-Molina, H., Motwani, R., Ullman, J.: Computing iceberg queries efficiently. In: Proceedings of 22nd International Conference on Very Large Data Bases, pp. 307–317 (1996)

    Google Scholar 

  7. Charikar, M., Chen, K., Farach-Colton, M.: Finding frequent items in data streams. In: Proceedings of the 29th International Colloquium on Automata, Languages, and Programming, pp. 693–703 (2002)

    Google Scholar 

  8. Indyk, P., Woodruff, D.P.: Optimal approximations of the frequency moments of data sets. In: Proceedings of the 37th Annual ACM Symposium on Theory of Computing, pp. 202–208. ACM Press, New York (2005)

    Google Scholar 

  9. Bar-Yossef, Z., Jayram, T.S., Kumar, R., Sivakumar, D.: An information statistics approach to data stream and communication complexity. Journal of Computer and System Sciences 68(4), 702–732 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  11. Cover, T.M., Thomas, J.A.: Elements of Information Theory. John Wiley & Sons Inc, Chichester (1991)

    Book  MATH  Google Scholar 

  12. Chakrabarti, A., Khot, S., Sun, X.: Near-optimal lower bounds on the multiparty communication complexity of set-disjointness. In: Proceedings of the 18th Annual IEEE Conference on Computational Complexity, pp. 107–117. IEEE Computer Society Press, Los Alamitos (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kumar, R., Panigrahy, R. (2007). On Finding Frequent Elements in a Data Stream. In: Charikar, M., Jansen, K., Reingold, O., Rolim, J.D.P. (eds) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. APPROX RANDOM 2007 2007. Lecture Notes in Computer Science, vol 4627. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74208-1_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74208-1_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74207-4

  • Online ISBN: 978-3-540-74208-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics