iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-540-73817-6_9
Complexity of a CHR Solver for Existentially Quantified Conjunctions of Equations over Trees | SpringerLink
Skip to main content

Complexity of a CHR Solver for Existentially Quantified Conjunctions of Equations over Trees

  • Conference paper
Recent Advances in Constraints (CSCLP 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4651))

  • 209 Accesses

Abstract

Constraint Handling Rules (CHR) is a concurrent, committed-choice, rule-based language. One of the first CHR programs is the classic constraint solver for syntactic equality of rational trees that performs unification. We first prove its exponential complexity in time and space for non-flat equations and deduce from this proof a quadratic complexity for flat equations. We then present an extended CHR solver for solving existentially quantified conjunctions of non-flat equations in the theory of finite or infinite trees. We reach a quadratic complexity by first flattening the equations and introducing new existentially quantified variables, then using the classic solver, and finally eliminating particular equations and quantified variables.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Colmerauer, A.: Prolog and infinite trees. In: Clark, K.L., Tärnlund, S.-A. (eds.) Logic Programming, pp. 231–251. Academic Press, London (1982)

    Google Scholar 

  2. Djelloul, K.: Decomposable theories. J. Theory and Practice of Logic Programming (to appear)

    Google Scholar 

  3. Frühwirth, T.: Theory and Practice of Constraint Handling Rules. J. Logic Programming 37(1-3), 95–138 (1998)

    Article  MATH  Google Scholar 

  4. Frühwirth, T.: Parallelizing union-find in Constraint Handling Rules using confluence. In: Gabbrielli, M., Gupta, G. (eds.) ICLP 2005. LNCS, vol. 3668, pp. 113–127. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  5. Frühwirth, T., Abdennadher, S.: Essentials of Constraint Programming. Springer, Heidelberg (2003)

    Google Scholar 

  6. Herbrand, J.: Recherches sur la théorie de la demonstration. PhD thesis, Université de Paris, France (1930)

    Google Scholar 

  7. Huet, G.: Confluent reductions: Abstract properties and applications to term rewriting systems. J. ACM 27(4), 797–821 (1980)

    Article  MATH  Google Scholar 

  8. Maher, M.J.: Complete axiomatizations of the algebras of finite, rational, and infinite trees. In: LICS 1988, pp. 348–357, Los Alamitos (CA), USA (1988)

    Google Scholar 

  9. Martelli, A., Montanari, U.: An efficient unification algorithm. ACM Trans. Program. Lang. Syst. 4(2), 258–282 (1982)

    Article  MATH  Google Scholar 

  10. Meister, M., Frühwirth, T.: Complexity of the CHR rational tree equation solver. In: CHR 2006, Report CW, vol. 452, pp. 77–92. K.U. Leuven, Belgium (2006)

    Google Scholar 

  11. Paterson, M.S., Wegman, M.N.: Linear unification. J. Computer and System Sciences 16(2), 158–167 (1978)

    Article  MATH  Google Scholar 

  12. Robinson, J.A.: A machine-oriented logic based on the resolution principle. J. ACM 12(1), 23–41 (1965)

    Article  MATH  Google Scholar 

  13. Schrijvers, T., Frühwirth, T.: Optimal union-find in Constraint Handling Rules. J. Theory and Practice of Logic Programming 6(1&2), 213–224 (2006)

    Article  MATH  Google Scholar 

  14. Schrijvers, T., et al.: Constraint Handling Rules (CHR) web page (2007), http://www.cs.kuleuven.ac.be/~dtai/projects/CHR/

  15. Tarjan, R.E., Van Leeuwen, J.: Worst-case analysis of set union algorithms. J. ACM 31(2), 245–281 (1984)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Francisco Azevedo Pedro Barahona François Fages Francesca Rossi

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Meister, M., Djelloul, K., Frühwirth, T. (2007). Complexity of a CHR Solver for Existentially Quantified Conjunctions of Equations over Trees. In: Azevedo, F., Barahona, P., Fages, F., Rossi, F. (eds) Recent Advances in Constraints. CSCLP 2006. Lecture Notes in Computer Science(), vol 4651. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73817-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73817-6_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73816-9

  • Online ISBN: 978-3-540-73817-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics