iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-540-73273-0_57
A Recursive Anisotropic Fast Marching Approach to Reaction Diffusion Equation: Application to Tumor Growth Modeling | SpringerLink
Skip to main content

A Recursive Anisotropic Fast Marching Approach to Reaction Diffusion Equation: Application to Tumor Growth Modeling

  • Conference paper
Information Processing in Medical Imaging (IPMI 2007)

Abstract

Bridging the gap between clinical applications and mathematical models is one of the new challenges of medical image analysis. In this paper, we propose an efficient and accurate algorithm to solve anisotropic Eikonal equations, in order to link biological models using reaction-diffusion equations to clinical observations, such as medical images. The example application we use to demonstrate our methodology is tumor growth modeling. We simulate the motion of the tumor front visible in images and give preliminary results by solving the derived anisotropic Eikonal equation with the recursive fast marching algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Aronson, D., Weinberger, H.: Multidimensional nonlinear diffusion arising in population genetics. Advances in Mathematics 30 (1978)

    Google Scholar 

  • Ebert, U.: W.S.: Front propagation into unstable states: universal algebraic convergence towards uniformly translating pulled fronts. Physica D: Nonlinear Phenomena 146 (2000)

    Google Scholar 

  • Tovi, M.: Mr imaging in cerebral gliomas analysis of tumour tissue components. Acta Radiol. Suppl. (1993)

    Google Scholar 

  • Sethian, J., Vladimirsky, A.: Ordered upwind methods for static hamilton-jacobi equations: theory and algorithms. SIAM J. Numer. Anal. 41 (2003)

    Google Scholar 

  • Kao, C., Osher, S., Tsai, Y.: Fast sweeping methods for static hamilton-jacobi equations. SIAM J. Numer. Anal. 42 (2005)

    Google Scholar 

  • Qian, J., Zhang, Y., Zhao, H.: A fast sweeping method for static convex hamilton-jacobi equations. UCLA Comp. and App. Math. Reports, 06-37 (2006)

    Google Scholar 

  • Kevorkian, J.: Partial differential equations: Analytical solution techniques. Springer, Heidelberg (2000)

    MATH  Google Scholar 

  • Sethian, J.: Level set methods and fast marching methods: Evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  • Qian, J., Symes, W.: Paraxial eikonal solvers for anisotropic quasi-p travel times. J. Comp. Physics, 173 (2001)

    Google Scholar 

  • Keener, J., Sneyd, J.: Mathematical physiology. Springer, Heidelberg (1998)

    MATH  Google Scholar 

  • Murray, J.: Mathematical Biology. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  • Maini, P., McElwain, D., Leavesley, D.: Traveling wave model to interpret a wound-healing cell migration assay for human peritoneal mesothelial cells. Tissue Eng. 10 (2004)

    Google Scholar 

  • Bramson, M.: Convergence of solutions of the kolmogoroff equations to traveling waves. Mem. Am. Math. Soc (1983)

    Google Scholar 

  • Cristini, V., Lowengrub, J., Nie, Q.: Nonlinear simulation of tumor growth. Journal of Math. Biol. 46 (2003)

    Google Scholar 

  • Swanson, K., Alvord, E., Murray, J.: Virtual brain tumours (gliomas) enhance the reality of medical imaging and highlight inadequacies of current therapy. British Journal of Cancer, 86 (2002)

    Google Scholar 

  • Clatz, O., Sermesant, M., Bondiau, P., Delingette, H., Warfield, S., Malandain, G., Ayache, N.: Realistic simulation of the 3d growth of brain tumors in mr images coupling diffusion with biomechanical deformation. IEEE T.M.I. 24(10) (2005)

    Google Scholar 

  • Giese, A., Kluwe, L., Laube, B., Meissner, H., Berens, M., Westphal, M.: Migration of human glioma cells on myelin. Neurosurgery, 38(4) (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Nico Karssemeijer Boudewijn Lelieveldt

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Konukoglu, E., Sermesant, M., Clatz, O., Peyrat, JM., Delingette, H., Ayache, N. (2007). A Recursive Anisotropic Fast Marching Approach to Reaction Diffusion Equation: Application to Tumor Growth Modeling. In: Karssemeijer, N., Lelieveldt, B. (eds) Information Processing in Medical Imaging. IPMI 2007. Lecture Notes in Computer Science, vol 4584. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73273-0_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73273-0_57

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73272-3

  • Online ISBN: 978-3-540-73273-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics