iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-540-72823-8_77
Towards Segmentation Based on a Shape Prior Manifold | SpringerLink
Skip to main content

Towards Segmentation Based on a Shape Prior Manifold

  • Conference paper
Scale Space and Variational Methods in Computer Vision (SSVM 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4485))

Abstract

Incorporating shape priors in image segmentation has become a key problem in computer vision. Most existing work is limited to a linearized shape space with small deformation modes around a mean shape. These approaches are relevant only when the learning set is composed of very similar shapes. Also, there is no guarantee on the visual quality of the resulting shapes. In this paper, we introduce a new framework that can handle more general shape priors. We model a category of shapes as a finite dimensional manifold, the shape prior manifold, which we approximate from the shape samples using the Laplacian eigenmap technique. Our main contribution is to properly define a projection operator onto the manifold by interpolating between shape samples using local weighted means, thereby improving over the naive nearest neighbor approach. Our method is stated as a variational problem that is solved using an iterative numerical scheme. We obtain promising results with synthetic and real shapes which show the potential of our method for segmentation tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cootes, T., et al.: Active shape models-their training and application. Computer Vision and Image Understanding 61(1), 38–59 (1995)

    Article  Google Scholar 

  2. Leventon, M., Grimson, E., Faugeras, O.: Statistical shape influence in geodesic active contours. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 316–323. IEEE Computer Society Press, Los Alamitos (2000)

    Google Scholar 

  3. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton–Jacobi formulations. Journal of Computational Physics 79(1), 12–49 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  4. Sethian, J.A.: Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Sciences. Cambridge Monograph on Applied and Computational Mathematics. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  5. Osher, S., Fedkiw, R.P.: Level set methods: an overview and some recent results. Journal of Computational Physics 169(2), 463–502 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  6. Rousson, M., Paragios, N.: Shape Priors for Level Set Representations. In: Heyden, A., et al. (eds.) ECCV 2002. LNCS, vol. 2351, pp. 78–92. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  7. Chen, Y., et al.: Using prior shapes in geometric active contours in a variational framework. The International Journal of Computer Vision 50(3), 315–328 (2002)

    Article  MATH  Google Scholar 

  8. Tsai, A., et al.: A shape-based approach to the segmentation of medical imagery using level sets. IEEE Transactions on Medical Imaging 22(2), 137–154 (2003)

    Article  Google Scholar 

  9. Cremers, D., Kohlberger, T., Schnörr, C.: Nonlinear Shape Statistics in Mumford-Shah Based Segmentation. In: Heyden, A., et al. (eds.) ECCV 2002. LNCS, vol. 2351, pp. 93–108. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  10. Charpiat, G., Faugeras, O., Keriven, R.: Approximations of shape metrics and application to shape warping and empirical shape statistics. Foundations of Computational Mathematics 5(1), 1–58 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Duci, A., et al.: Shape representation via harmonic embedding. In: ICCV ’03: Proceedings of the Ninth IEEE International Conference on Computer Vision, Washington, DC, USA, p. 656. IEEE Computer Society Press, Los Alamitos (2003)

    Chapter  Google Scholar 

  12. Delfour, M.C., Zolésio, J.-P.: Shapes and geometries: analysis, differential calculus, and optimization. Society for Industrial and Applied Mathematics, Philadelphia (2001)

    MATH  Google Scholar 

  13. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation 15(6), 1373–1396 (2003)

    Article  MATH  Google Scholar 

  14. Charpiat, G., et al.: Distance-based shape statistics. In: IEEE International Conference on Acoustics, Speech and Signal Processing, vol. 5, pp. 925–928. IEEE Computer Society Press, Los Alamitos (2006)

    Google Scholar 

  15. Solem, J.E.: Geodesic curves for analysis of continuous implicit shapes. In: International Conference on Pattern Recognition, vol. 1, pp. 43–46 (2006)

    Google Scholar 

  16. Serra, J.: Hausdorff distances and interpolations. In: International Symposium on Mathematical Morphology and its Applications to Image and Signal Processing, pp. 107–114 (1998)

    Google Scholar 

  17. Roweis, S., Saul, L.: Nonlinear dimensionality reduction by locally linear embedding. Science 290, 2323–2326 (2000)

    Article  Google Scholar 

  18. He, X., Niyogi, P.: Locality preserving projections. In: Advances in Neural Information Processing Systems, vol. 16, MIT Press, Cambridge (2004)

    Google Scholar 

  19. Beg, M.F., et al.: Computing large deformation metric mappings via geodesic flows of diffeomorphisms. Int. J. Comput. Vision 61(2), 139–157 (2005)

    Article  Google Scholar 

  20. Michor, P.W., Mumford, D.: Riemannian geometries on spaces of plane curves. J. Eur. Math. Soc. 8, 1–48 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  21. Yezzi, A., Mennucci, A.: Conformal metrics and true ”gradient flows” for curves. In: ICCV, vol. 1, pp. 913–919 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Fiorella Sgallari Almerico Murli Nikos Paragios

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Etyngier, P., Keriven, R., Pons, JP. (2007). Towards Segmentation Based on a Shape Prior Manifold. In: Sgallari, F., Murli, A., Paragios, N. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2007. Lecture Notes in Computer Science, vol 4485. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72823-8_77

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72823-8_77

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72822-1

  • Online ISBN: 978-3-540-72823-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics