iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-540-72693-7_15
Ant Colony Optimization and its Application to Regular and Dynamic MAX-SAT Problems | SpringerLink
Skip to main content

Ant Colony Optimization and its Application to Regular and Dynamic MAX-SAT Problems

  • Chapter
Advances in Biologically Inspired Information Systems

Part of the book series: Studies in Computational Intelligence ((SCI,volume 69))

In this chapter we discuss the ant colony optimization meta-heuristic (ACO) and its application to static and dynamic constraint satisfaction optimization problems, in particular the static and dynamic maximum satisfiability problems (MAX-SAT). In the first part of the chapter we give an introduction to meta-heuristics in general and ant colony optimization in particular, followed by an introduction to constraint satisfaction and static and dynamic constraint satisfaction optimization problems. Then, we describe how to apply the ACO algorithm to the problems, and do an analysis of the results obtained for several benchmarks. The adapted ant colony optimization accomplishes very well the task of dealing with systematic changes of dynamic MAX-SAT instances derived from static problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press (2004)

    Google Scholar 

  2. Garey, M.R., Johson, D.S.J.: Computers and Intractability: A Guide to the Theory of NP-Completeness. WH Freeman Publishers (1979)

    Google Scholar 

  3. Roli, A., Blum, C., Dorigo, M.: ACO for maximal constraint satisfaction problems. MIC’2001 - Metaheuristics International Conference, Porto, Portugal (2001) 187-192

    Google Scholar 

  4. Kennedy, J., Eberhart, R.: Swarm intelligence. Morgan Kaufmann Publishers (2001)

    Google Scholar 

  5. Osman, I., Laporte, G.: Metaheuristics: A bibliography. Annals of Operations Research (63)(1996)513-628,

    Article  MATH  MathSciNet  Google Scholar 

  6. Blum, C., Roli, A.:  Metaheuristics in combinatorial optimization: Overview and concep-tual comparison. ACM Compututational Survey 35(3) (2003) 268-308

    Article  Google Scholar 

  7. Aarts, E.H.L., Korst, J.H.M., Laarhoven, P.J.M.V.:  Simulated annealing. In: Local Search in Combinatorial Optimization. Wiley-Interscience Eds, Chichester, England (1997) 91-120

    Google Scholar 

  8. Glover, F., Laguna, M.: Tabu search. (1993) 70-150

    Google Scholar 

  9. Ramalhinho-Lourenço, H., Martin, O.C., Stützle, T.: Iterated local search. (513) (2000)

    Google Scholar 

  10. Feo, T., Resende, M.: Greedy randomized adaptive search procedures. Journal of Global Optimization 6 (1995) 109-133

    Article  MATH  MathSciNet  Google Scholar 

  11. Cicirello, V.A., Smith, S.F.: Wasp-like agents for distributed factory coordination. Autonomous Agents and Multi-agent systems 8 (2004) 237-266

    Article  Google Scholar 

  12. Pinto, P., Runkler, T.A., Sousa, J.M.C.: Agent based optimization of the MAX -SAT problem using wasp swarms. Controlo 2006, 7th Portuguese Conference on Automatic Control (2006)

    Google Scholar 

  13. Pinto, P., Runkler, T.A., Sousa, J.M.C.: Wasp swarm algorithm for dynamic MAX -SAT problems. ICANNGA 2007, 8th International Conference on Adaptive and Natural Com-puting Algorithms (2007)

    Google Scholar 

  14. Abbass, H.: An agent based approach to 3-SAT using marriage in honey-bees optimization. International Journal of Knowledge-Based Intelligent Engineering Systems (2002) 1-8

    Google Scholar 

  15. Grasse., P.P.: La reconstruction du nid et les coordinations inter-individuelles chez belli-cositermes natalensis et cubitermes sp. la theorie de la stigmergie: Essai d’interpretation du comportement des termites constructeurs. Insectes Sociaux 6 (1959) 41-81

    Article  Google Scholar 

  16. Pimont, S., Solnon, C.: A generic ant algorithm for solving constraint satisfaction prob-lems. 2nd International Workshop on Ant Algorithms (ANTS 2000), Brussels, Belgium (2000)100-108

    Google Scholar 

  17. Cicirello, V.A., Smith, S.F.: Ant colony for autonomous decentralized shop floor routing. In: Proceedings of ISADS-2001, Fifth International symposium on autonomous decen-tralized systems. (2001)

    Google Scholar 

  18. Silva, C.A., Runkler, T.A., Sousa, J.M.C., da Costa, J.M.S.:  Optimization of logistic processes in supply-chains using meta-heuristics. In Pires, F.M., Abreu, S., eds.: Lecture Notes on Artificial Intelligence 2902, Progress in Artificial Intelligence, 11th Portuguese Conference on Artificial Intelligence. Springer Verlag, Beja, Portugal (2003) 9-23

    Google Scholar 

  19. Silva, C.A., Runkler, T.A., Sousa, J.M.C., Palm, R.: Ant colonies as logistic process optimizers. In Dorigo, M., Caro, G.D., Sampels, M., eds.: Ant Algorithms, International Workshop ANTS 2002, Brussels, Belgium. Lecture Notes in Computer Science LNCS 2463, Heidelberg, Springer (2002) 76-87

    Google Scholar 

  20. Applegate, D.L., Bixby, R.E., Chvátal, V., Cook, W.J.: The Traveling Salesman Problem: A Computational Study. Princeton University Press (2007)

    Google Scholar 

  21. Tsang, E.: Foundations of Constraint Satisfaction. Academic Press (1993)

    Google Scholar 

  22. Gennari, R.: Temporal reasoning and constraint programming: A survey (1998)

    Google Scholar 

  23. Frei, C., Faltings, B.: Resource allocation and constraint satisfaction techniques. In: CP ’99: Proceedings of the 5th International Conference on Principles and Practice of Constraint Programming, London, UK, Springer-Verlag (1999) 204-218

    Google Scholar 

  24. Cesta, A., Cortellessa, G., Oddi, A., Policella, N., Susi, A.: A constraint-based archi-tecture for flexible support to activity scheduling. In: AI*IA 01: Proceedings of the 7th Congress of the Italian Association for Artificial Intelligence on Advances in Artificial Intelligence, London, UK, Springer-Verlag (2001) 369-381

    Google Scholar 

  25. Abril, M., Salido, M.A., Barber, F., Ingolotti, L.: Distributed constraint satisfaction prob-lems to model railway scheduling problems. ICAPS 2006 Workshop on Constraint Satis-faction Techniques for Planning and Scheduling Problems, Cumbria (England) (2006)

    Google Scholar 

  26. Rasconi, R., Policella, N., Cesta, A.: Fix the schedule or solve again - comparing constraint-based approaches to schedule execution. In: Proceedings of the ICAPS Workshop on Constraint Satisfaction Techniques for Planning and Scheduling Problems. (2006)

    Google Scholar 

  27. Goodrich, M.T., Tamassia, R.: Algorithm Design - Foundations, Analysis, and Internet Examples. John Wiley & Sons, Inc. (2001)

    Google Scholar 

  28. Zhang, W.: Phase transitions and backbones of 3-SAT and maximum 3-SAT. In: Princi-ples and Practice of Constraint Programming. (2001) 153-167

    Google Scholar 

  29. Cheeseman, P., Kanefsky, B., Taylor, W.M.: Where the really hard problems are. In: Pro-ceedings of the Twelfth International Joint Conference on Artificial Intelligence, IJCAI-91, Sidney, Australia. (1991) 331-337

    Google Scholar 

  30. Mitchell, D., Selman, B., Levesque, H.: Hard and easy distributions of SAT problems. In: 10-th National Conf. on Artificial Intelligence (AAAI-92), San Jose, CA (1992) 459-465

    Google Scholar 

  31. Mertens, K., Holvoet, T., Berbers, Y.: The dynCOAA algorithm for dynamic constraint optimization problems. In Weiss, G., Stone, Peter, e., eds.: Proceedings of the Fifth International Joint Conference on Autonomous Agents and MultiAgent Systems. (2006) 1421-1423

    Google Scholar 

  32. Mertens, K., Holvoet, T., Berbers, Y.: Which dynamic constraint problems can be solved by ants. In Sutcliffe, G., Goebel, Randy, E., eds.: Proceedings of The 19th International FLAIRS Conference. (2006) 439-444

    Google Scholar 

  33. Mailler, R.: Comparing two approaches to dynamic, distributed constraint satisfaction. In: AAMAS ’05: Proceedings of the Fourth International Joint Conference on Autonomous Agents and Multiagent Systems, New York, NY, USA, ACM Press (2005) 1049-1056

    Chapter  Google Scholar 

  34. Hoos, H.H., O’Neill, K.: Stochastic local search methods for dynamic SAT - an initial investigation. AAAI-2000 Workshop “Leveraging Probability and Uncertainty in Com-putation”, Austin, Texas (2000) 22-26

    Google Scholar 

  35. Solnon, C.: Ants can solve constraint satisfaction problems. IEEE Transactions on Evo-lutionary Computation 6 (2002) 347-357

    Article  Google Scholar 

  36. Battiti, R., Protasi, M.: Reactive search, a history-based heuristic for MAX -SAT. ACM Journal of Experimental Algorithmics 2 (1997)

    Google Scholar 

  37. Johnson, D., Trick, M.: Cliques, coloring, and satisfiability: Second DIMACS implemen-tation challenge. DIMACS Series in Discrete Mathematics and Theoretical Computer Science (1996)

    Google Scholar 

  38. Hoos, H.H., Stützle, T.: SATLIB: An online resource for research on SAT. SAT 2000 (2000)283-292

    Google Scholar 

  39. Hoos, H.H., Stützle, T.: Local search algorithms for SAT: an empirical evaluation. Journal of Automated Reasoning, special Issue “SAT 2000” (1999) 421-481

    Google Scholar 

  40. Smyth, K., Hoos, H.H., Stützle, T.: Iterated robust tabu search for MAX -SAT. Lecture Notes in Computer Science, Springer Verlag 44 (2003) 279-303

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pinto, P.C., Runkler, T.A., Sousa, J.M.C. (2007). Ant Colony Optimization and its Application to Regular and Dynamic MAX-SAT Problems. In: Dressler, F., Carreras, I. (eds) Advances in Biologically Inspired Information Systems. Studies in Computational Intelligence, vol 69. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72693-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72693-7_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72692-0

  • Online ISBN: 978-3-540-72693-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics