Abstract
High-frequency response analysis (Hi-FRA) is required to predict the resonant behavior of modern microsystems operated over a high frequency range. Algebraic substructuring (AS) method is a powerful numerical technique for FRA. However, the existing AS method is developed for low-FRA, say over the range 1Hz–2KHz. In this work, we extend the AS method for FRA over a given frequency range [ω min ,ω max ]. Therefore, it can be efficiently applied to systems operated at high frequency, say over the range 1MHz–2MHz. The success of the proposed method is demonstrated by Hi-FRA of a microgyroscope.
Chapter PDF
Similar content being viewed by others
Keywords
References
Bennighof, J.K., Kim, C.K. (eds.): An addaptive multi-level substururing method for efficient modeling of complex strucutures. In: Proceedings of the AIAA 33rd SDM Conference, Dallas, Texas, pp. 1631–1639 (1992)
Bennighof, J.K., Kaplan, M.F. (eds.): Frequency sweep analysis using multi-level substructuring, global modes and iteration. In: Proceedings of 39th AIAA/ASME/ASCE/AHS Structures, Structural Dynamics and Materials Conference (1998)
Craig, J.R.R., Bampton, M.C.C.: Coupling of substructures for dynamic analysis. AIAA Journal 6(7), 1313–1319 (1968)
Demmel, J.W., Eisenstat, S.C., Gilbert, J.R., Li, X.S., Liu, J.W.H.: A supernodal approach to sparse partial pivoting. SIAM J. Matrix Anal. Appl. 20(3), 720–755 (1999)
Gao, W., Li, X.S., Yang, C., Bai, Z. (eds.): An implementation and evaluation of the AMLS method for sparse eigenvalue problems. Technical Report LBNL-57438, Lawrence Berkeley National Laboratory (2006)
Karypis, G.: METIS. Department of Computer Science and Engineering at the University of Minnesota (2006), http://www-users.cs.umn.edu/~karypis/metis/metis/index.html
Lehoucq, R., Sorensen, D.C., Yang, C.: ARPACK User’s Guide: Solution of Large-Scale Eignevalue Problems with Implicitly Restarted Arnoldi Methods. SIAM, Philadelphia (1998)
Lienemann, J., Billger, D., Rudnyi, E.B., Greiner, A., Korvink, J.G.: MEMS compact modeling meets model order reduction: Examples of the application of arnoldi methods to microsystem devices. In: The Technical Proceedings of the 2004 Nanotechnology Conference and Trade Show, Nanotech 04 (2004)
Thomas, B., Gu, R.J.: Structural-acoustic mode synthesis for vehicle interior using finite-boundary elements with residual flexibility. Int. J. of Vehicle Design 23, 191–202 (2000)
Yang, C., Gao, W., Bai, Z., Li, X., Lee, L., Husbands, P., Ng, E.: An algebraic substructuring method for large-scale eigenvalue calculations. SIAM J. Sci. Comput. 27(3), 873–892 (2005)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this paper
Cite this paper
Ko, J.H., Bai, Z. (2007). An Algebraic Substructuring Method for High-Frequency Response Analysis of Micro-systems. In: Shi, Y., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds) Computational Science – ICCS 2007. ICCS 2007. Lecture Notes in Computer Science, vol 4487. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72584-8_69
Download citation
DOI: https://doi.org/10.1007/978-3-540-72584-8_69
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-72583-1
Online ISBN: 978-3-540-72584-8
eBook Packages: Computer ScienceComputer Science (R0)