Abstract
The Collatz problem, widely known as the 3x + 1 problem, asks whether or not a certain simple iterative process halts on all inputs. In this paper, we build on work of J. H. Conway to show that a natural generalization of the Collatz problem is \({\it \Pi}^0_2\) complete.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Collatz, L.: On the origin of the (3n+1) problem. Journal of Qufu Normal University, Natural Science Edition 12(3), 9–11 (1986)
Lagarias, J.C.: The 3x+1 problem: An annotated bibliography (1963–2000). ArXiv math (NT0608208) (2006)
Lagarias, J.C.: The 3x+1 problem and its generalizations. American Mathematics Monthly 92(1), 3–23 (1985)
Wirsching, G.J.: The Dynamical System Generated by the 3n+1 Function. Lecture Notes in Mathematics, vol. 1681. Springer, Berlin (1981)
Matthews, K.R.: The generalized 3x + 1 mapping (2006)
Conway, J.H.: Unpredictable iterations. In: Number Theory Conference, University of Colorado, Boulder, 1972, pp. 49–52 (1972)
Conway, J.H.: Fractran, a simple universal computing language for arithmetic. In: Clover, T.M., Gopinath, B. (eds.) Open Problems in Communication and Computation, pp. 3–27. Springer, Heidelberg (1987)
Rogers, H.: Theory of Recursive Functions and Effective Computability. MIT Press, Cambridge (1987)
Minsky, M.L.: Recursive unsolvability of Post’s problem of “tag” and other topics in the theory of Turing machines. Annals of Mathematics 74(3), 437–455 (1961)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kurtz, S.A., Simon, J. (2007). The Undecidability of the Generalized Collatz Problem. In: Cai, JY., Cooper, S.B., Zhu, H. (eds) Theory and Applications of Models of Computation. TAMC 2007. Lecture Notes in Computer Science, vol 4484. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72504-6_49
Download citation
DOI: https://doi.org/10.1007/978-3-540-72504-6_49
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-72503-9
Online ISBN: 978-3-540-72504-6
eBook Packages: Computer ScienceComputer Science (R0)