iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-540-72504-6_49
The Undecidability of the Generalized Collatz Problem | SpringerLink
Skip to main content

The Undecidability of the Generalized Collatz Problem

  • Conference paper
Theory and Applications of Models of Computation (TAMC 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4484))

Abstract

The Collatz problem, widely known as the 3x + 1 problem, asks whether or not a certain simple iterative process halts on all inputs. In this paper, we build on work of J. H. Conway to show that a natural generalization of the Collatz problem is \({\it \Pi}^0_2\) complete.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Collatz, L.: On the origin of the (3n+1) problem. Journal of Qufu Normal University, Natural Science Edition 12(3), 9–11 (1986)

    Google Scholar 

  2. Lagarias, J.C.: The 3x+1 problem: An annotated bibliography (1963–2000). ArXiv math (NT0608208) (2006)

    Google Scholar 

  3. Lagarias, J.C.: The 3x+1 problem and its generalizations. American Mathematics Monthly 92(1), 3–23 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  4. Wirsching, G.J.: The Dynamical System Generated by the 3n+1 Function. Lecture Notes in Mathematics, vol. 1681. Springer, Berlin (1981)

    Google Scholar 

  5. Matthews, K.R.: The generalized 3x + 1 mapping (2006)

    Google Scholar 

  6. Conway, J.H.: Unpredictable iterations. In: Number Theory Conference, University of Colorado, Boulder, 1972, pp. 49–52 (1972)

    Google Scholar 

  7. Conway, J.H.: Fractran, a simple universal computing language for arithmetic. In: Clover, T.M., Gopinath, B. (eds.) Open Problems in Communication and Computation, pp. 3–27. Springer, Heidelberg (1987)

    Google Scholar 

  8. Rogers, H.: Theory of Recursive Functions and Effective Computability. MIT Press, Cambridge (1987)

    Google Scholar 

  9. Minsky, M.L.: Recursive unsolvability of Post’s problem of “tag” and other topics in the theory of Turing machines. Annals of Mathematics 74(3), 437–455 (1961)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jin-Yi Cai S. Barry Cooper Hong Zhu

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kurtz, S.A., Simon, J. (2007). The Undecidability of the Generalized Collatz Problem. In: Cai, JY., Cooper, S.B., Zhu, H. (eds) Theory and Applications of Models of Computation. TAMC 2007. Lecture Notes in Computer Science, vol 4484. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72504-6_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72504-6_49

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72503-9

  • Online ISBN: 978-3-540-72504-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics