Abstract
This paper investigates the satisfiability of Propositional Projection Temporal Logic (PPTL) with infinite models. A decision procedure for PPTL formulas is formalized. To this end, Normal Form (NF) and Normal Form Graph (NFG) for PPTL formulas are defined and an algorithm constructing NFG for PPTL formulas is presented. Further, examples are also given to illustrate how the decision algorithm works.
This research is supported by the NSFC Grant No. 60373103 and 60433010.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Kripke, S.A.: Semantical analysis of modal logic I: normal propositional calculi. Z. Math. Logik Grund. Math. 9, 67–96 (1963)
Rosner, R., Pnueli, A.: A choppy logic. In: First Annual IEEE Symposium on Logic In Computer Science, LICS, pp. 306–314 (1986)
Moszkowski, B.C.: Reasoning about digital circuits. Ph.D Thesis, Department of Computer Science, Stanford University. TRSTAN-CS-83-970 (1983)
Moszkowski, B.: A Complete Axiomatization of Interval Temporal Logic with Infinite Time. In: 15th Annual IEEE Symposium on Logic in Computer Science (LICS’00), p. 241 (2000)
Zhou, C., Hoare, C.A.R., Ravn, A.P.: A calculus of duration. Information Processing Letters 40(5), 269–275 (1991)
Duan, Z.: Temporal Logic and Temporal Logic Programming. Science Press of China, Beijing (2006)
Duan, Z., Koutny, M.: A Framed Temporal Logic Programming Language. Journal of Computer Science and Technology 19(3), 341–351 (2004)
Duan, Z., Yang, X., Koutny, M.: Semantics of Framed Temporal Logic Programs. In: Gabbrielli, M., Gupta, G. (eds.) ICLP 2005. LNCS, vol. 3668, pp. 256–270. Springer, Heidelberg (2005)
Duan, Z., Zhang, L.: A Decision Procedure for Propositional Projection Temporal Logic. Technical Report No.1, Institute of computing Theory and Technology, Xidian University, Xi’an, P.R. China (2005), http://www.paper.edu.cn/process/download.jsp?file=200611-427
Duan, Z., Tian, C.: Decison Prodedure for Propositional Projection Temporal Logic with Infinite Models. Technical Report No.1, Institute of computing Theory and Technology, Xidian University, Xi’an, P.R. China (2006), http://www.paper.edu.cn/process/download.jsp?file=200611-444
Duan, Z., Koutny, M., Holt, C.: Projection in temporal logic programming. In: Pfenning, F. (ed.) LPAR 1994. LNCS, vol. 822, pp. 333–344. Springer, Heidelberg (1994)
Kono, S.: A combination of clausal and non-clausal temporal logic programs. In: Fisher, M., Owens, R. (eds.) IJCAI-WS 1993. LNCS, vol. 897, pp. 40–57. Springer, Heidelberg (1995)
Bowman, H., Thompson, S.: A decision procedure and complete axiomatization of interval temporal logic with projection. Journal of logic and Computation 13(2), 195–239 (2003)
Dutertre, B.: Complete proof systems for first order interval temporal logic. In: Proceedings of LICS’95, pp. 36–43 (1995)
Manna, Z., Pnueli, A.: The temporal logic of reactive and concurrent systems. Springer, Heidelberg (1992)
Holzmann, G.J.: The Model Checker Spin. IEEE Trans. on Software Engineering 23(5), 279–295 (1997)
McMillan, K.L.: Symbolic Model Checking. Kluwer Academic Publishers, Dordrecht (1993)
Wang, H., Xu, Q.: Completeness of Temporal Logics over Infinite Models. Discrete Applied Mathematics 136, 87–103 (2004)
Yang, X., Duan, Z.: Operational Semantics of Framed Temporal Logic Programs. In: van Leeuwen, J., et al. (eds.) SOFSEM 2007. LNCS, vol. 4362, pp. 566–578. Springer, Heidelberg (2007)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Duan, Z., Tian, C. (2007). Decidability of Propositional Projection Temporal Logic with Infinite Models. In: Cai, JY., Cooper, S.B., Zhu, H. (eds) Theory and Applications of Models of Computation. TAMC 2007. Lecture Notes in Computer Science, vol 4484. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72504-6_47
Download citation
DOI: https://doi.org/10.1007/978-3-540-72504-6_47
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-72503-9
Online ISBN: 978-3-540-72504-6
eBook Packages: Computer ScienceComputer Science (R0)