iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-540-72504-6_3
Approximation Algorithms for 3D Orthogonal Knapsack | SpringerLink
Skip to main content

Approximation Algorithms for 3D Orthogonal Knapsack

  • Conference paper
Theory and Applications of Models of Computation (TAMC 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4484))

Abstract

We study non-overlapping axis-parallel packings of 3D boxes with profits into a dedicated bigger box where rotation is forbidden; we wish to maximize the total profit. Since this optimization problem is NP-hard, we focus on approximation algorithms. We obtain fast and simple algorithms with approximation ratios 9 + ε and 8 + ε as well as an algorithm with approximation ratio 7 + ε that uses more sophisticated techniques; these are the smallest approximation ratios known for this problem. Topics: Algorithms, computational and structural complexity.

Research supported in part by DFG Project, “Entwicklung und Analyse von Approximativen Algorithmen für Gemischte und Verallgemeinerte Packungs- und Überdeckungsprobleme, JA 612/10-1”, in part by the German Academic Exchange Service DAAD, in part by project AEOLUS, EU contract number 015964, and in part by a grant “DAAD Doktorandenstipendium” of the German Academic Exchange Service DAAD. Part of this work was done while visiting the ID-IMAG, ENSIMAG, Grenoble.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baker, B.S., Brown, D.J., Katseff, H.P.: A 5/4 algorithm for two-dimensional packing. Journal of Algorithms 2(4), 348–368 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bansal, N., et al.: Bin packing in multiple dimensions: inapproximability results and approximation schemes. Mathematics of Operations Research 31, 31–49 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bansal, N., et al.: Harmonic algorithm for 3-dimensional strip packing problem. Accepted at the ACM-SIAM Symposium on Discrete Algorithms (SODA) (2007)

    Google Scholar 

  4. Caprara, A.: Packing two-dimensional bins in harmony. In: Proceedings of the 43rd IEEE Symposium on Foundations of Computer Science (FOCS), pp. 490–499 (2005)

    Google Scholar 

  5. Diedrich, F.: Approximative Algorithmen für Rucksackprobleme. Diploma thesis, Institut für Informatik und Praktische Mathematik der Christian-Albrechts-Universität zu Kiel (2004)

    Google Scholar 

  6. Feldmann, A., Sgall, J., Teng, S.-H.: Dynamic scheduling on parallel machines. Theoretical Computer Science (Special Issue on Dynamic and On-line Algorithms) 130(1), 49–72 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  7. Fernandez de la Vega, W., Lueker, G.: Bin packing can be solved within 1 + ε in linear time. Combinatorica 1(4), 349–355 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  8. Harren, R.: Approximating the Orthogonal Knapsack Problem for Hypercubes. In: Bugliesi, M., et al. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 238–249. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Harren, R.: Approximation Mehrdimensionaler Packungsprobleme. Diploma thesis, Universität Dortmund (2006)

    Google Scholar 

  10. Jansen, K., Solis-Oba, R.: An asymptotic approximation algorithm for 3d-strip packing. In: Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 143–152 (2006)

    Google Scholar 

  11. Jansen, K., Zhang, G.: Maximizing the total profit of rectangles packed into a rectangle. In: Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 197–206 (2004)

    Google Scholar 

  12. Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer, Heidelberg (2004)

    MATH  Google Scholar 

  13. Kenyon, C., Rémila, E.: A near-optimal solution to a two dimensional cutting stock problem. Mathematics of Operations Research 25, 645–656 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  14. Lawler, E.: Fast approximation algorithms for knapsack problems. Mathematics of Operations Research 4, 339–356 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  15. Leung, J.Y.-T., et al.: Packing squares into a square. Journal of Parallel and Distributed Computing 10, 271–275 (1990)

    Article  MathSciNet  Google Scholar 

  16. Li, K., Cheng, K.-H.: On three-dimensional packing. SIAM Journal of Computation 19(5), 847–867 (1990), doi:10.1137/0219059

    Article  MATH  MathSciNet  Google Scholar 

  17. Li, K., Cheng, K.-H.: Heuristic algorithms for on-line packing in three dimensions. Journal of Algorithms 13, 589–605 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  18. Li, R.H., Yue, M.Y.: The proof of \(\text{FFD}(\text{L}) \leq (11/9)\text{OPT}(\text{L})+(7/9)\). Chinese Science Bulletin 42, 1262–1265 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  19. Martello, S., Toth, P.: Knapsack Problems: Algorithms and Computer Implementations. Wiley, Chichester (1990)

    MATH  Google Scholar 

  20. Miyazawa, F.K., Wakabayashi, Y.: An algorithm for the three-dimensional packing problem with asymptotic performance analysis. Algorithmica 18, 122–144 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  21. Schiermeyer, I.: Reverse-fit: A 2-optimal algorithm for packing rectangles. In: van Leeuwen, J. (ed.) ESA 1994. LNCS, vol. 855, pp. 290–299. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  22. Sleator, D.D.K.: A 2.5 times optimal algorithm for packing in two dimensions. Information Processing Letters 10(1), 37–40 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  23. Steinberg, A.: A strip-packing algorithm with absolute performance bound 2. SIAM Journal of Computation 26(2), 401–409 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  24. Vazirani, V.V.: Approximation Algorithms. Springer, Heidelberg (2001)

    Google Scholar 

  25. Zhang, G., Ye, D.: Online Scheduling of Parallel Jobs with Dependencies on 2-Dimensional Meshes. In: Ibaraki, T., Katoh, N., Ono, H. (eds.) ISAAC 2003. LNCS, vol. 2906, pp. 329–338. Springer, Heidelberg (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jin-Yi Cai S. Barry Cooper Hong Zhu

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Diedrich, F., Harren, R., Jansen, K., Thöle, R., Thomas, H. (2007). Approximation Algorithms for 3D Orthogonal Knapsack. In: Cai, JY., Cooper, S.B., Zhu, H. (eds) Theory and Applications of Models of Computation. TAMC 2007. Lecture Notes in Computer Science, vol 4484. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72504-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72504-6_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72503-9

  • Online ISBN: 978-3-540-72504-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics