iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-540-71078-3_1
Cryptography and Cryptanalysis Through Computational Intelligence | SpringerLink
Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 57))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adleman L (1979) A subexponential algorithm for discrete logarithm problem with applications to cryptography. In: Proceedings of the 20th FOCS, pp. 55-60.

    Google Scholar 

  2. Anthony M (2003) Boolean functions and artificial neural networks. Technical report, CDAM, The London School of Economics and Political Science. CDAM Research Report LSE-CDAM-2003-01.

    Google Scholar 

  3. Bäck T (1996) Evolutionary Algorithms in Theory and Practice : Evolution Strategies, Evolutionary Programming, Genetic Algorithms. Oxford University Press.

    Google Scholar 

  4. Bagnall T, McKeown G. P, Rayward-Smith V. J (1997) The cryptanalysis of a three rotor machine using a genetic algorithm. In: Bäck T (ed) Proceedings of the 7th International Conference on Genetic Algorithms (ICGA97), San Francisco, CA, Morgan Kaufmann.

    Google Scholar 

  5. Barbieri A, Cagnoni S, Colavolpe G (2004) A genetic approach for generating good linear block error-correcting codes. Lecture Notes in Computer Science 3103:1301-1302.

    Google Scholar 

  6. Biham E, Shamir A (1991) Differential cryptanalysis of DES-like cryptosys- tems. Journal of Cryptology.

    Google Scholar 

  7. Biham E, Shamir A (1993) Differential Cryptanalysis of the Data Encryption Standard. Springer-Verlag.

    Google Scholar 

  8. Blake I (1999) Elliptic Curves in Cryptography. London Mathematical Society Lecture Notes Series vol. 265. Cambridge University Press.

    Google Scholar 

  9. Blum A, Furst M, Kearns M, Lipton R. J (1994) Cryptographic primitives based on hard learning problems. Lecture Notes in Computer Science 773: 278-291.

    Article  MathSciNet  Google Scholar 

  10. Bonabeau E, Dorigo M, Théraulaz G (1999) From Natural to Artificial Swarm Intelligence. Oxford University Press, New York.

    Google Scholar 

  11. Boutsinas B, Vrahatis M. N (2001) Artificial nonmonotonic neural networks. Artificial Intelligence 132:1-38.

    Article  MATH  MathSciNet  Google Scholar 

  12. Burnett L, Carter G, Dawson E, Millan W (2001) Efficient methods for generating Mars-like S-boxes. Lecture Notes in Computer Science 1978(4):300-313.

    Article  Google Scholar 

  13. Carrol J, Martin S (1986) The automated cryptanalysis of substitution ciphers. Cryptologia 10(4):193-209.

    Article  Google Scholar 

  14. Chang Y.-C, Lu C.-J (2001) Oblivious polynomial evaluation and oblivious neural learning. Lecture Notes in Computer Science 2248:369-384.

    Article  MathSciNet  Google Scholar 

  15. Chui C.K, Li X (1991) Realization of neural networks with one hidden layer. Technical report, Center for Approximation Theory, Dept. of Mathematics, Texas A&M University.

    Google Scholar 

  16. Chui C.K, and Li X (1992) Approximation by Ridge functions and neural networks with one hidden layer. Journal of Approximation Theory 70:131-141.

    Article  MATH  MathSciNet  Google Scholar 

  17. Clark A(1998) Optimisation Heuristics for Cryptography. PhD Thesis, Queensland University of Technology, Australia.

    Google Scholar 

  18. Clark J.A, Jacob J.L (2000) Two-stage optimisation in the design of Boolean functions. Lecture Notes in Computer Science 1841:242-254.

    Article  Google Scholar 

  19. Clark J.A, Jacob J.L (2002) Fault injection and a timing channel on an analysis technique. Lecture Notes in Computer Science 2332:181-196.

    Article  Google Scholar 

  20. Clark J.A, Jacob J.L, Stepney S (2004) The design of S-boxes by Simulated Annealing. In: CEC 2004: International Conference on Evolutionary Computation, Portland OR, USA, June 2004, pp. 1517-1524. IEEE.

    Google Scholar 

  21. Clerc M, Kennedy J (2002) The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation 6(1):58-73.

    Article  Google Scholar 

  22. Coppersmith D, Shparlinski I (2000) On polynomial approximation of the discrete logarithm and the Diffie-Hellman mapping. Journal of Cryptology 13:339-360.

    Article  MATH  MathSciNet  Google Scholar 

  23. DasGupta B, Schnitger G (1996) Analog versus discrete neural networks. Neural Computation 8(4):805-818.

    Article  Google Scholar 

  24. De Jong K.A (1985) Genetic algorithms: A 10 year perspective. In: Proceedings of the First International Conference on Genetic Algorithms pp. 169-177. Lawrence Erlbaum Associates.

    Google Scholar 

  25. Diffie W, Hellman M.E (1976) New directions in cryptography. IEEE Transactions on Information Theory IT-22(6):644-654.

    Article  MATH  MathSciNet  Google Scholar 

  26. Dontas K, Jong K (1990) Discovery of maximal distance codes using genetic algorithms. In: Proceedings of the Second International IEEE Conference on Tools for Artificial Intelligence pp. 805-811.

    Google Scholar 

  27. Dorigo M, Gambardella L M (1997) Ant colonies for the traveling salesman problem. BioSystems 43:73-81.

    Article  Google Scholar 

  28. Eberhart R C, Simpson P, Dobbins R (1996) Computational Intelligence PC Tools. Academic Press.

    Google Scholar 

  29. ElGamal T (1985) A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Transactions on Information Theory 31(4):469-472.

    Article  MATH  MathSciNet  Google Scholar 

  30. Engelbrecht A (2002) Computational Intelligence: An Introduction. John Wiley & Sons.

    Google Scholar 

  31. Epitropakis M.G, Vrahatis M.N (2005) Root finding and approximation approaches through neural networks. SIGSAM Bulletin: Communications in Computer Algebra, ACM Press 39(4):118-121.

    MathSciNet  Google Scholar 

  32. Feistel H (1973) Cryptography and computer privacy. Scientific American.

    Google Scholar 

  33. Fogel D.B (1993) Evolving behaviours in the iterated prisoner’s dilemma. Evolutionary Computation 1(1):77-97.

    Article  MathSciNet  Google Scholar 

  34. Fogel D.B (1995) Evolutionary Computation: Towards a New Philosophy of Machine Intelligence. IEEE Press, Piscataway, NJ.

    Google Scholar 

  35. Fogel D.B, Owens A.J, Walsh M.J (1966) Artificial Intelligence Through Simulated Evolution. John Wiley, Chichester, UK.

    MATH  Google Scholar 

  36. Forsyth W.S, Safavi-Naini R (1993) Automated cryptanalysis of substitution ciphers. Cryptologia 17(4):407-418.

    Article  MATH  Google Scholar 

  37. Ghosh J, Shin Y (1992) Efficient higher-order neural networks for classification and function approximation. International Journal of Neural Systems 3:323-350.

    Article  Google Scholar 

  38. Goldberg D.E (1989) Genetic Algorithms in Search, Optimization, and Machine Learning. Addison Wesley, Reading, MA.

    Google Scholar 

  39. Hassoun M.H (1995) Foundamentals of Artificial Neural Networks. MIT Press, Cambridge, MA.

    Google Scholar 

  40. H˚astad J, Näslund M (2004) The security of all RSA and discrete log bits. Journal of the ACM 51(2):187-230.

    Article  MathSciNet  Google Scholar 

  41. Haykin S (1999) Neural Networks, A Comprehensive Foundation. Prentice Hall, New Jersey, USA, 2nd edition edition.

    MATH  Google Scholar 

  42. Herdy M (1991) Application of the evolution strategy to discrete optimization problems. Lecture Notes in Computer Science pp. 188-192.

    Google Scholar 

  43. Hernández J, Isasi P, Ribagorda A (2002) An application of genetic algorithms to the cryptoanalysis of one round TEA. In: Proc. of the 2002 Symposium on Artificial Intelligence and its Application.

    Google Scholar 

  44. Hernández J, Sierra J, Isasi P, Ribagorda A (2002) Genetic cryptoanalysis of two rounds TEA. Lecture Notes in Computer Science 2331:1024-1031.

    Article  Google Scholar 

  45. Holland J.H (1975) Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor.

    Google Scholar 

  46. Hornik K (1989) Multilayer feedforward networks are universal approximators. Neural Networks 2:359-366.

    Article  Google Scholar 

  47. Hunter D, McKenzie A (1983) Experiments with relaxation algorithms for breaking simple substitution ciphers. The Computer Journal 26(1):68-71.

    Article  Google Scholar 

  48. Isasi P, Hernández J (2004) Introduction to the applications of evolutionary computation in computer security and cryptography. Computational Intelligence 20(3):445-449.

    Article  MathSciNet  Google Scholar 

  49. Jakobsen T (1995) A fast method for cryptanalysis of substitution ciphers. Cryptologia 19(3):265-274.

    Article  MATH  Google Scholar 

  50. Karras D, Zorkadis V (2002) Strong pseudorandom bit sequence generators using neural network techniques and their evaluation for secure communications. Lecture Notes in Artificial Intelligence 2557:615-626.

    MathSciNet  Google Scholar 

  51. Karras D, Zorkadis V (2003) On neural network techniques in the secure management of communication systems through improving and quality assessing pseudorandom stream generators. Neural Networks 16:899-905.

    Article  Google Scholar 

  52. Kennedy J, Eberhart R.C (2001) Swarm Intelligence. Morgan Kaufmann Publishers.

    Google Scholar 

  53. King J, Bahler D (1992) An implementation of probabilistic relaxation in the cryptanalysis of simple substitution ciphers. Cryptologia 16(3):215-225.

    Article  Google Scholar 

  54. 54. Kinzel W, Kanter I (2002) Interacting neural networks and cryptography. In: Kramer B (ed) Advances in Solid State Physics. vol. 42, pp. 383-391. Springer-Verlag.

    Google Scholar 

  55. Klimov A, Mityagin A, Shamir A (2002) Analysis of neural cryptography. Lecture Notes in Computer Science 2501:288-298.

    Article  MathSciNet  Google Scholar 

  56. Knudsen L.R, Meier W (1999) A new identification scheme based on the perceptrons problem. Lecture Notes in Computer Science 1592:363-374.

    Article  Google Scholar 

  57. Koblitz N (1987) Elliptic curve cryptosystems. Mathematics of Computation 48:203-209.

    Article  MATH  MathSciNet  Google Scholar 

  58. Kohonen T (2000) Self-Organizing Maps. Springer-Verlag, Berlin, 3rd edition.

    Google Scholar 

  59. Konstantinou E, Stamatiou Y, Zaroliagis C (2002) A software library for elliptic curve cryptography. Lecture Notes in Computer Science 2461:625-637.

    Article  Google Scholar 

  60. Kotlarz P, Kotulski Z (2005) On application of neural networks for s-boxes design. Lecture Notes in Artificial Intelligence 3528:243-248.

    Google Scholar 

  61. Koza J.R (1992) Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge, MA.

    Google Scholar 

  62. Lange T, Winterhof A (2002) Incomplete character sums over finite fields and their application to the interpolation of the discrete logarithm by boolean functions. Acta Arithmetica 101(3):223-229.

    Article  MATH  MathSciNet  Google Scholar 

  63. Laskari E.C, Meletiou G.C, Stamatiou Y.C, Tasoulis D.K, Vrahatis M.N (2006) Assessing the effectiveness of artificial neural networks on problems related to elliptic curve cryptography. Mathematical and Computer Modelling. to appear.

    Google Scholar 

  64. Laskari E.C, Meletiou G.C, Stamatiou Y.C, Vrahatis M.N (2005) Evolutionary computation based cryptanalysis: A first study. Nonlinear Analysis: Theory, Methods and Applications 63:e823-e830.

    Article  MATH  Google Scholar 

  65. Laskari E.C, Meletiou G.C, Vrahatis M.N (2005) Problems of Cryptography as Discrete Optimization Tasks. Nonlinear Analysis: Theory, Methods and Applications 63:e831-e837.

    Article  MATH  Google Scholar 

  66. Laskari E.C, Meletiou G.C, Stamatiou Y.C, Vrahatis M.N (2006) Applying evolutionary computation methods for the cryptanalysis of Feistel ciphers. Applied Mathematics and Computation. to appear.

    Google Scholar 

  67. Laskari E.C, Meletiou G.C, Tasoulis D.K, Vrahatis M.N (2005) Aitken and Neville inverse interpolation methods over finite fields. Applied Numerical Analysis and Computational Mathematics 2(1):100-107.

    Article  MATH  MathSciNet  Google Scholar 

  68. Laskari E.C, Meletiou G.C, Tasoulis D.K, Vrahatis M.N (2005) Transformations of two cryptographic problems in terms of matrices. SIGSAM Bulletin: Communications in Computer Algebra, ACM Press 39(4):127-130.

    MathSciNet  Google Scholar 

  69. Laskari E.C, Meletiou G.C, Tasoulis D.K, Vrahatis M.N (2006) Studying the performance of artificial neural networks on problems related to cryptography. Nonlinear Analysis Series B: Real World Applications 7(5):937-942.

    Article  MATH  MathSciNet  Google Scholar 

  70. Laskari E.C, Meletiou G.C, Vrahatis M.N (2004) The discrete logarithm problem as an optimization task: A first study. In: Proceedings of the IASTED International Conference on Artificial Intelligence and Applications pp. 1-6. ACTA Press.

    Google Scholar 

  71. Laskari E.C, Parsopoulos K.E, Vrahatis M.N (2002) Particle swarm optimization for integer programming. In: Proceedings of the IEEE 2002 Congress on Evolutionary Computation pp. 1576-15812. IEEE Press.

    Google Scholar 

  72. Laskari E.C, Parsopoulos K.E, Vrahatis M.N (2002) Particle swarm optimization for minimax problems. In: Proceedings of the IEEE 2002 Congress on Evolutionary Computation pp. 1576-1581. IEEE Press.

    Google Scholar 

  73. Magoulas G.D, Plagianakos V.P, Vrahatis M.N (2001) Adaptive stepsize algorithms for online training of neural networks. Nonlinear Analysis T.M.A. 47(5):3425-3430.

    Article  MATH  MathSciNet  Google Scholar 

  74. Magoulas G.D, Vrahatis M.N (2006) Adaptive algorithms for neural network supervised learning: a deterministic optimization approach. International Journal of Bifurcation and Chaos 16(7):1929-1950.

    Article  MATH  MathSciNet  Google Scholar 

  75. Magoulas G.D, Vrahatis M.N, Androulakis G.S (1997) Effective backpropagation training with variable stepsize. Neural Networks 10(1):69-82.

    Article  Google Scholar 

  76. Magoulas G.D, Vrahatis M.N, Androulakis G.S (1999) Increasing the convergence rate of the error backpropagation algorithm by learning rate adaptation methods. Neural Computation 11(7):1769-1796.

    Article  Google Scholar 

  77. Mathews R (1993) The use of genetic algorithms in cryptanalysis. Cryptologia 17(4):187-201.

    Article  Google Scholar 

  78. Matsui M (1994) Linear cryptanalysis method for DES cipher. Lecture Notes in Computer Science 765:386-397.

    Article  Google Scholar 

  79. Matsui M, Yamagishi A (1992) new method for known plaintext attack of feal cipher. Lecture Notes in Computer Science pp. 81-91.

    Google Scholar 

  80. Maurer U, Wolf S (1999) The relationship between breaking the diffiehellman protocol and computing discrete logarithms. SIAM Journal on Computing 28:1689-1721.

    Article  MATH  MathSciNet  Google Scholar 

  81. Meletiou G.C (1992) A polynomial representation for exponents in Zp . Bulletin of the Greek Mathematical Society 34:59-63.

    MATH  MathSciNet  Google Scholar 

  82. Meletiou G.C (1993) Explicit form for the discrete logarithm over the field GF(p, k). Archivum Mathematicum (Brno) 29(1-2):25-28.

    MATH  MathSciNet  Google Scholar 

  83. Meletiou G.C, Mullen G.L (1992) A note on discrete logarithms in finite fields. Applicable Algebra in Engineering, Communication and Computing 3(1):75-79.

    Article  MATH  MathSciNet  Google Scholar 

  84. Meletiou G.C, Tasoulis D.K, Vrahatis M.N (2003) Cryptography through interpolation approximation and computational inteligence methods. Bulletin of the Greek Mathematical Society 48:61-75.

    MathSciNet  Google Scholar 

  85. 85. Menezes A, van Oorschot P, Vanstone S (1996) Handbook of applied cryptography. CRC Press series on discrete mathematics and its applications. CRC Press.

    Google Scholar 

  86. Merkle R.C, Hellman M.E (1978) Hiding information and signatures in trapdoor knapsacks. IEEE Transactions on Information Theory 24:525-530.

    Article  Google Scholar 

  87. Michalewicz Z (1994) Genetic Algorithms + Data Structures = Evolution Programs. Springer, Berlin.

    MATH  Google Scholar 

  88. Millan W, Clark A, Dawson E (1997) Smart hill climbing finds better boolean functions. In: Proceedings of the 4th Workshop on Selected Areas in Cryptography.

    Google Scholar 

  89. Millan W, Clark A, Dawson E (1999) Boolean function design using hill climbing methods. Lecture Notes in Computer Science 1587:1-11.

    Article  Google Scholar 

  90. Miller V (1986) Uses of elliptic curves in cryptography. Lecture Notes in Computer Science 218:417-426.

    Article  Google Scholar 

  91. Mislovaty R, Perchenok Y, Kanter I, Kinzel W (2002) Secure keyexchange protocol with an absence of injective functions. Phys. Rev. E 66(6):066102-1- 066102-5.

    Article  Google Scholar 

  92. Møller M.F (1993) A scaled conjugate gradient algorithm for fast supervised learning. Neural Networks 6:525-533.

    Article  Google Scholar 

  93. Mullen G.L, White D (1986) A polynomial representation for logarithms in GF(q). Acta Arithmetica 47:255-261.

    MATH  MathSciNet  Google Scholar 

  94. National Bureau of Standards, U.S. Department of Commerce, FIPS pub. 46. Data Encryption Standard. January 1977.

    Google Scholar 

  95. Niederreiter H (1990) A short proof for explicit formulas for discrete logarithms in finite fields. Applicable Algebra in Engineering, Communication and Computing 1:55-57.

    Article  MATH  MathSciNet  Google Scholar 

  96. Odlyzko A (2000) Discrete logarithms: The past and the future. Designs, Codes, and Cryptography 19(2-3):129-145.

    Article  MATH  MathSciNet  Google Scholar 

  97. Parsopoulos K.E, Vrahatis M.N (2002) Initializing the particle swarm optimizer using the nonlinear simplex method. In: Grmela A, Mastorakis N.E (eds) Advances in Intelligent Systems, Fuzzy Systems, Evolutionary Computation pp. 216-221.

    Google Scholar 

  98. Parsopoulos K.E, Vrahatis M.N (2002) Recent approaches to global optimization problems through particle swarm optimization. Natural Computing 1(2-3):235-306.

    Article  MATH  MathSciNet  Google Scholar 

  99. Parsopoulos K.E, Vrahatis, M.N (2004) On the computation of all global minimizers through particle swarm optimization. IEEE Transactions on Evolutionary Computation 8(3):211-224.

    Article  MathSciNet  Google Scholar 

  100. Peleg S, Rosenfeld A (1979) Breaking substitution ciphers using a relaxation algorithm. Communications of the ACM 22(11):598-605.

    Article  MATH  Google Scholar 

  101. Peralta R (1986) Simultaneous security of bits in the discrete log. Lecture Notes in Computer Science 219:62-72.

    Article  MathSciNet  Google Scholar 

  102. Pincus A (1999) Approximation theory of the mlp model in neural networks. Acta Numerica pp. 143-195.

    Google Scholar 

  103. Plagianakos V, Vrahatis M.N (2002) Parallel Evolutionary Training Algorithms for “Hardware-Friendly” Neural Networks. Natural Computing 1:307-322.

    Article  MATH  MathSciNet  Google Scholar 

  104. Pohlig S.C, Hellman M (1978) An improved algorithm for computing logarithms over GF(p) and its cryptographic significance. IEEE Transactions on Information Theory 24:106-110.

    Article  MATH  MathSciNet  Google Scholar 

  105. Pointcheval D (1994) Neural networks and their cryptographic applications. In: Charpin P (ed) INRIA, Livres de resumes EUROCODE’94.

    Google Scholar 

  106. Pointcheval D (1995) A new identification scheme based on the perceptrons problem. Lecture Notes in Computer Science 950:318-328.

    Google Scholar 

  107. Ramzan Z (1998) On Using Neural Networks to Break Cryptosystems. PhD Thesis. Laboratory of Computer Science, MIT.

    Google Scholar 

  108. Rao S.S (1996) Engineering Optimization-Theory and Practice. Wiley Eastern, New Delhi.

    Google Scholar 

  109. Rechenberg I (1973) Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. Frommann-Holzboog Verlag, Stuttgart, Germany.

    Google Scholar 

  110. Riedmiller M, Braun H (1993) A direct adaptive method for faster backpropagation learning: The RPROP algorithm. In: Proceedings of the IEEE International Conference on Neural Networks pp. 586-591.

    Google Scholar 

  111. Rivest R (1991) Cryptography and machine learning. Lecture Notes in Computer Science 739:427-439.

    Google Scholar 

  112. Rivest R, Shamir A, Adleman L (1978) A method for obtaining digital signatures and public key cryptosystems. Communications of the ACM 21:120-126.

    Article  MATH  MathSciNet  Google Scholar 

  113. Rosen-Zvi M, Kanter I, Kinzel W (2002) Cryptography based on neural networks - analytical results. Journal of Physics A: Mathematical and General 35 (47):L707-L713.

    Article  MATH  MathSciNet  Google Scholar 

  114. Rumelhart D, Hinton G, Williams R (1986) Learning internal representations by error propagation. In: RumelhartD.E, McClelland J.L (eds) Parallel distributed processing: Explorations in the microstructure of cognition. vol. 1 pp. 318-362. MIT Press.

    Google Scholar 

  115. Ruttor A, Kinzel W, Kanter I (2005) Neural cryptography with queries. Journal of Statistical Mechanics pp. P01009.

    Google Scholar 

  116. Ruttor A, Kinzel W, Shacham L, Kanter I (2004) Neural cryptography with feedback. Physical Review E 69(4):046110-1-046110-7.

    Article  MathSciNet  Google Scholar 

  117. Schwefel H.-P (1995) Evolution and Optimum Seeking. Wiley, New York.

    Google Scholar 

  118. Shi Y, Eberhart R.C (1998) A modified particle swarm optimizer. In: Proceedings of the IEEE Conference on Evolutionary Computation. Anchorage, AK.

    Google Scholar 

  119. Shin Y, Ghosh J (1991) Realization of Boolean functions using binary Pi-Sigma networks. In: Proceedings of the Conference on Artificial Neural Networks in Engineering. St. Louis.

    Google Scholar 

  120. Shparlinski I (ed) (2003) Cryptographic Applications of Analytic Number Theory. Progress in Computer Science and Applied Logic. Birkhäuser Verlag.

    MATH  Google Scholar 

  121. Silverman J.H (1986) The Arithmetic of Elliptic Curves. Springer-Verlag.

    MATH  Google Scholar 

  122. Specht D.F (1990) Probabilistic neural networks. Neural Networks 3(1):109-118.

    Article  Google Scholar 

  123. Spillman R (1993) Cryptanalysis of knapsack ciphers using genetic algorithms. Cryptologia 17(4):367-377.

    Article  MATH  Google Scholar 

  124. Spillman R, Janssen M, Nelson B, Kepner M (1993) Use of a genetic algorithm in the cryptanalysis of simple substitution ciphers. Cryptologia 17(1):31-44.

    Article  Google Scholar 

  125. Stinson D (1995) Cryptography: Theory and Practice (Discrete Mathematics and Its Applications). CRC Press.

    Google Scholar 

  126. Storn R, Price K (1997) Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization 11:341-359.

    Article  MATH  MathSciNet  Google Scholar 

  127. Tasoulis D.K, Pavlidis N.G, Plagianakos V.P, Vrahatis M.N (2004) Parallel Differential Evolution. In: Proceedings of the IEEE 2004 Congress on Evolutionary Computation (CEC 2004), Portland.

    Google Scholar 

  128. Terano T, Asai K, Sugeno M (1992) A Complete Introduction to the Field: Fuzzy Systems Theory and Its Applications. Academic Press.

    Google Scholar 

  129. Vertan C, Geangala C (1996) Breaking the Merkle-Hellman cryptosystem by genetic algorithms: Locality versus performance. In: Zimmermann H, Negoita M, Dascalu D (eds), Real World Applications of Intelligent Technologies pp. 201-208. Editura Academiei Romanie, Bucharest.

    Google Scholar 

  130. Vrahatis M.N, Androulakis G.S, Lambrinos J.N, Magoulas G.D (2000) A class of gradient unconstrained minimization algorithms with adaptive stepsize. Journal of Computational and Applied Mathematics 114(2):367-386.

    Article  MATH  MathSciNet  Google Scholar 

  131. White H (1990) Connectionist nonparametric regression: Multilayer feedfor- ward networks can learn arbitrary mappings. Neural Networks 3:535-549.

    Article  Google Scholar 

  132. Wilson D, Martinez T (1997) Improved heterogeneous distance functions. Journal of Artificial Intelligence Research 6:1-34.

    MATH  MathSciNet  Google Scholar 

  133. Winterhof A (2001) A note on the interpolation of the Diffie-Hellman mapping. Bulletin of Australian Mathematical Society 64(3):475-477.

    Article  MATH  MathSciNet  Google Scholar 

  134. Winterhof A (2002) Polynomial interpolation of the discrete logarithm. Designs, Codes and Cryptography 25(1):63-72.

    Article  MATH  MathSciNet  Google Scholar 

  135. Yue T.-W, Chiang S (2001) The general neural-network paradigm for visual cryptography. Lecture Notes in Computer Science 2084:196-206.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Laskari, E.C., Meletiou, G.C., Stamatiou, Y.C., Vrahatis, M.N. (2007). Cryptography and Cryptanalysis Through Computational Intelligence. In: Nedjah, N., Abraham, A., Mourelle, L.d.M. (eds) Computational Intelligence in Information Assurance and Security. Studies in Computational Intelligence, vol 57. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71078-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71078-3_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71077-6

  • Online ISBN: 978-3-540-71078-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics