iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-540-70778-3_9
Assisting Cancer Diagnosis with Fuzzy Neural Networks | SpringerLink
Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 151))

  • 894 Accesses

Summary

Cancer diagnosis from huge microarray gene expression data is an important and challenging bioinformatics research topic. We used a fuzzy neural network (FNN) proposed earlier for cancer classification. This FNN contains three valuable aspects i.e., automatically generating fuzzy membership functions, parameter optimization, and rule-base simplification. One major obstacle in microarray data set classifier is that the number of features (genes) is much larger than the number of objects. We therefore used a feature selection method based on t-test to select more significant genes before applying the FNN. In this work we used three well-known microarray databases, i.e., the lymphoma data set, the small round blue cell tumor (SRBCT) data set, and the ovarian cancer data set. In all cases we obtained 100% accuracy with fewer genes in comparison with previously published results. Our result shows the FNN classifier not only improves the accuracy of cancer classification problem but also helps biologists to find a better relationship between important genes and development of cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Schena, M., Shalon, D., Davis, R.W., Brown, P.O.: Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467–470 (1995)

    Article  Google Scholar 

  2. Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J.P., Coller, H., Loh, M.L., Downing, J.R., Caligiuri, M.A., et al.: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531–537 (1999)

    Article  Google Scholar 

  3. Khan, J.M., Wei, J.S., Ringner, M., Saal, L.H., Ladanyi, M., Westermann, F., Berthold, F., Schwab, M., Antonescu, C.R., Peterson, C., et al.: Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nature Medicine 7, 673–679 (2001)

    Article  Google Scholar 

  4. Brown, M.P., Grundy, W.N., Lin, D., Cristianini, N., Sugnet, C.W., Furey, T.S., Jr. M., Haussler, D.: Knowledge-based analysis of microarray gene expression data by using support vector machines. In: Proc. Natl Acad. Sci., USA, vol. 97, pp. 262–267 (2000)

    Google Scholar 

  5. Tibshirani, R., Hastie, T., Narashiman, B., Chu, G.: Diagnosis of multiple cancer types by shrunken centroids of gene expression. In: Proc. Natl. Acad. Sci., USA, vol. 99, pp. 6567–6572 (2002)

    Google Scholar 

  6. Tibshirani, R., Hastie, T., Narasimhan, B., Chu, G.: Class predicition by nearest shrunken centroids with applications to DNA microarrays. Statistical Science 18, 104–117 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. Alizadeh, A.A., Eisen, M.B., Davis, R.E., Ma, C., Lossos, I.S., Rosenwald, A., Boldrick, J.C., Sabet, H., Tran, T., Yu, X., et al.: Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403, 503–511 (2000)

    Article  Google Scholar 

  8. Deutsch, J.M.: Evolutionary algorithms for finding optimal gene sets in microarray prediction. Bioinformatics 19, 45–52 (2003)

    Article  Google Scholar 

  9. Lee, Y., Lee, C.K.: Classification of multiple cancer types by mulitcategory support vector machines using gene expression data. Bioinformatics 19, 1132–1139 (2003)

    Article  Google Scholar 

  10. Dudoit, S., Fridlyand, J., Speed, T.P.: Comparison of discrimination methods for the classification of tumors using gene expression data. Journal of the American Statistical Association 97, 77–87 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Schaner, M.E., Ross, D.T., Ciaravino, G., Sorlie, T., Troyanskaya, O., Diehn, M., Wang, Y.C., Duran, G.E., Sikic, T.L., Caldeira, S.: Gene expression patterns in ovarian carcinomas. Molecular Biology of the Cell 14, 4376–4386 (2003)

    Article  Google Scholar 

  12. Frayman, Y., Wang, L.: Data mining using dynamically constructed fuzzy neural networks. In: Wu, X., Kotagiri, R., Korb, K.B. (eds.) PAKDD 1998. LNCS, vol. 1394, pp. 122–131. Springer, Heidelberg (1998)

    Google Scholar 

  13. Frayman, Y., Wang, L.: A Dynamically-constructed fuzzy neural controller for direct model reference adaptive control of multi-input-multi-output nonlinear processes. Soft Computing 6, 244–253 (2002)

    MATH  Google Scholar 

  14. Chu, F., Xie, W., Wang, L.: Gene selection and cancer classification using a fuzzy neural network. In: Proceedings of the North-American Fuzzy Information Processing Conference (NAFIPS 2004), vol. 2, pp. 555–559 (2004)

    Google Scholar 

  15. Xie, W., Chu, F., Wang, L., Lim, E.T.: A fuzzy neural network for intelligent data processing. In: Proceedings of SPIE, Data Mining, Intrusion Detection, Information Assurance, and Data Networks Security 2005, vol. 5812, pp. 283–290 (2005)

    Google Scholar 

  16. Devore, J., Peck, R.: Statistics: the Exploration and Analysis of Data, 3rd edn. Duxbury Press, Pacific Grove, CA (1997)

    Google Scholar 

  17. Tusher, V.G., Tibshirani, R., Chu, G.: Significance analysis of microarrays applied to the ionizing radiation response. In: Proc. Natl. Acad. Sci., USA, vol. 98, pp. 5116–5121 (2001)

    Google Scholar 

  18. Higgins, C.M., Goodman, R.M.: Fuzzy rule-based networks for control. IEEE Transactions on Fuzzy Systems 2, 82–88 (1994)

    Article  Google Scholar 

  19. Wang, L.X., Mendel, J.M.: Generating fuzzy rules by learning from examples. IEEE Trans. Syst., Man, Cybern 22, 1414–1427 (1992)

    Article  MathSciNet  Google Scholar 

  20. Sugeno, M., Kang, G.T.: Structure identification of fuzzy model. Fuzzy Sets Syst. 28, 15–33 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  21. Werbos, P.: Beyond regression: new tools for prediction and analysis in the behavioral sciences. Ph.D. thesis, Harvard University, Cambridge, MA (1974)

    Google Scholar 

  22. Troyanskaya, O., Cantor, M., Sherlock, G., Brown, P., Hastie, T., Tibshirani, R., Botstein, D., Altman, R.B.: Missing value estimation methods for DNA microarrays. Bioinformatics 17, 520–525 (2001)

    Article  Google Scholar 

  23. Dubios, D., Prade, H.: A unifying view of comparison indices in a fuzzy set theoretic framework. In: Yager, R.R. (ed.) Fuzzy sets and possibility theory: Recent Developments, Pergamon, NY (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chu, F., Xie, W., Fazayeli, F., Wang, L. (2008). Assisting Cancer Diagnosis with Fuzzy Neural Networks. In: Smolinski, T.G., Milanova, M.G., Hassanien, AE. (eds) Computational Intelligence in Biomedicine and Bioinformatics. Studies in Computational Intelligence, vol 151. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70778-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70778-3_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70776-9

  • Online ISBN: 978-3-540-70778-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics