Abstract
Precision agriculture (PA) and information technology (IT) are closely interwoven. The former usually refers to the application of nowadays’ technology to agriculture. Due to the use of sensors and GPS technology, in today’s agriculture many data are collected. Making use of those data via IT often leads to dramatic improvements in efficiency. For this purpose, the challenge is to change these raw data into useful information. In this paper we deal with neural networks and their usage in mining these data. Our particular focus is whether neural networks can be used for predicting wheat yield from cheaply-available in-season data. Once this prediction is possible, the industrial application is quite straightforward: use data mining with neural networks for, e.g., optimizing fertilizer usage, in economic or environmental terms.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Drummond, S., Joshi, A., Sudduth, K.A.: Application of neural networks: precision farming. In: The 1998 IEEE International Joint Conference on Neural Networks Proceedings, 1998. IEEE World Congress on Computational Intelligence, vol. 1, pp. 211–215 (1998)
Fausett, L.V.: Fundamentals of Neural Networks. Prentice Hall, Englewood Cliffs (1994)
Hagan, M.T.: Neural Network Design (Electrical Engineering). Thomson Learning (December 1995)
Haykin, S.: Neural Networks: A Comprehensive Foundation, 2nd edn. Prentice Hall, Englewood Cliffs (1998)
Hecht-Nielsen, R.: Neurocomputing. Addison-Wesley, Reading (1990)
Heimlich, R.: Precision agriculture: information technology for improved resource use. Agricultural Outlook, 19–23 (April 1998)
Kitchen, N.R., Drummond, S.T., Lund, E.D., Sudduth, K.A., Buchleiter, G.W.: Soil Electrical Conductivity and Topography Related to Yield for Three Contrasting Soil-Crop Systems. Agron J. 95(3), 483–495 (2003)
Liu, J., Miller, J.R., Haboudane, D., Pattey, E.: Exploring the relationship between red edge parameters and crop variables for precision agriculture. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium, 2004. IGARSS 2004, vol. 2, pp. 1276–1279 (2004)
MacKay, D.J.C.: Bayesian interpolation. Neural Computation 4(3), 415–447 (1992)
Middleton, E.M., Campbell, P.K.E., Mcmurtrey, J.E., Corp, L.A., Butcher, L.M., Chappelle, E.W.: “Red edge” optical properties of corn leaves from different nitrogen regimes. In: IEEE International Geoscience and Remote Sensing Symposium, 2002. IGARSS 2002, vol. 4, pp. 2208–2210 (2002)
Schneider, M., Wagner, P.: Prerequisites for the adoption of new technologies - the example of precision agriculture. In: Agricultural Engineering for a Better World, Düsseldorf. VDI Verlag GmbH (2006)
Serele, C.Z., Gwyn, Q.H.J., Boisvert, J.B., Pattey, E., Mclaughlin, N., Daoust, G.: Corn yield prediction with artificial neural network trained using airborne remote sensing and topographic data. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium, 2000. IGARSS 2000, vol. 1, pp. 384–386 (2000)
Sonka, S.T., Bauer, M.E., Cherry, E.T., John, Heimlich, R.E.: Precision Agriculture in the 21st Century: Geospatial and Information Technologies in Crop Management. National Academy Press, Washington (1997)
Wagner, P., Schneider, M.: Economic benefits of neural network-generated site-specific decision rules for nitrogen fertilization. In: Stafford, J.V. (ed.) Proceedings of the 6th European Conference on Precision Agriculture, pp. 775–782 (2007)
Weigert, G.: Data Mining und Wissensentdeckung im Precision Farming - Entwicklung von ökonomisch optimierten Entscheidungsregeln zur kleinräumigen Stickstoff-Ausbringung. PhD thesis, TU München (2006)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ruß, G., Kruse, R., Schneider, M., Wagner, P. (2008). Data Mining with Neural Networks for Wheat Yield Prediction. In: Perner, P. (eds) Advances in Data Mining. Medical Applications, E-Commerce, Marketing, and Theoretical Aspects. ICDM 2008. Lecture Notes in Computer Science(), vol 5077. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70720-2_4
Download citation
DOI: https://doi.org/10.1007/978-3-540-70720-2_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-70717-2
Online ISBN: 978-3-540-70720-2
eBook Packages: Computer ScienceComputer Science (R0)