iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-540-70720-2_4
Data Mining with Neural Networks for Wheat Yield Prediction | SpringerLink
Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5077))

Included in the following conference series:

Abstract

Precision agriculture (PA) and information technology (IT) are closely interwoven. The former usually refers to the application of nowadays’ technology to agriculture. Due to the use of sensors and GPS technology, in today’s agriculture many data are collected. Making use of those data via IT often leads to dramatic improvements in efficiency. For this purpose, the challenge is to change these raw data into useful information. In this paper we deal with neural networks and their usage in mining these data. Our particular focus is whether neural networks can be used for predicting wheat yield from cheaply-available in-season data. Once this prediction is possible, the industrial application is quite straightforward: use data mining with neural networks for, e.g., optimizing fertilizer usage, in economic or environmental terms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Drummond, S., Joshi, A., Sudduth, K.A.: Application of neural networks: precision farming. In: The 1998 IEEE International Joint Conference on Neural Networks Proceedings, 1998. IEEE World Congress on Computational Intelligence, vol. 1, pp. 211–215 (1998)

    Google Scholar 

  2. Fausett, L.V.: Fundamentals of Neural Networks. Prentice Hall, Englewood Cliffs (1994)

    MATH  Google Scholar 

  3. Hagan, M.T.: Neural Network Design (Electrical Engineering). Thomson Learning (December 1995)

    Google Scholar 

  4. Haykin, S.: Neural Networks: A Comprehensive Foundation, 2nd edn. Prentice Hall, Englewood Cliffs (1998)

    Google Scholar 

  5. Hecht-Nielsen, R.: Neurocomputing. Addison-Wesley, Reading (1990)

    Google Scholar 

  6. Heimlich, R.: Precision agriculture: information technology for improved resource use. Agricultural Outlook, 19–23 (April 1998)

    Google Scholar 

  7. Kitchen, N.R., Drummond, S.T., Lund, E.D., Sudduth, K.A., Buchleiter, G.W.: Soil Electrical Conductivity and Topography Related to Yield for Three Contrasting Soil-Crop Systems. Agron J. 95(3), 483–495 (2003)

    Google Scholar 

  8. Liu, J., Miller, J.R., Haboudane, D., Pattey, E.: Exploring the relationship between red edge parameters and crop variables for precision agriculture. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium, 2004. IGARSS 2004, vol. 2, pp. 1276–1279 (2004)

    Google Scholar 

  9. MacKay, D.J.C.: Bayesian interpolation. Neural Computation 4(3), 415–447 (1992)

    Article  Google Scholar 

  10. Middleton, E.M., Campbell, P.K.E., Mcmurtrey, J.E., Corp, L.A., Butcher, L.M., Chappelle, E.W.: “Red edge” optical properties of corn leaves from different nitrogen regimes. In: IEEE International Geoscience and Remote Sensing Symposium, 2002. IGARSS 2002, vol. 4, pp. 2208–2210 (2002)

    Google Scholar 

  11. Schneider, M., Wagner, P.: Prerequisites for the adoption of new technologies - the example of precision agriculture. In: Agricultural Engineering for a Better World, Düsseldorf. VDI Verlag GmbH (2006)

    Google Scholar 

  12. Serele, C.Z., Gwyn, Q.H.J., Boisvert, J.B., Pattey, E., Mclaughlin, N., Daoust, G.: Corn yield prediction with artificial neural network trained using airborne remote sensing and topographic data. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium, 2000. IGARSS 2000, vol. 1, pp. 384–386 (2000)

    Google Scholar 

  13. Sonka, S.T., Bauer, M.E., Cherry, E.T., John, Heimlich, R.E.: Precision Agriculture in the 21st Century: Geospatial and Information Technologies in Crop Management. National Academy Press, Washington (1997)

    Google Scholar 

  14. Wagner, P., Schneider, M.: Economic benefits of neural network-generated site-specific decision rules for nitrogen fertilization. In: Stafford, J.V. (ed.) Proceedings of the 6th European Conference on Precision Agriculture, pp. 775–782 (2007)

    Google Scholar 

  15. Weigert, G.: Data Mining und Wissensentdeckung im Precision Farming - Entwicklung von ökonomisch optimierten Entscheidungsregeln zur kleinräumigen Stickstoff-Ausbringung. PhD thesis, TU München (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Petra Perner

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ruß, G., Kruse, R., Schneider, M., Wagner, P. (2008). Data Mining with Neural Networks for Wheat Yield Prediction. In: Perner, P. (eds) Advances in Data Mining. Medical Applications, E-Commerce, Marketing, and Theoretical Aspects. ICDM 2008. Lecture Notes in Computer Science(), vol 5077. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70720-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70720-2_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70717-2

  • Online ISBN: 978-3-540-70720-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics