Abstract
Recently, the applications of Web usage mining are more and more concentrated on finding valuable user behaviors from Web navigation record data, where the sequential pattern model has been well adapted. However with the growth of the explored user behaviors, the decision makers will be more and more interested in unexpected behaviors, but not only in those already confirmed. In this paper, we present our approach USER, that finds unexpected sequences and implication rules from sequential data with user defined beliefs, for mining unexpected behaviors from Web access logs. Our experiments with the belief bases constructed from explored user behaviors show that our approach is useful to extract unexpected behaviors for improving the Web site structures and user experiences.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Büchner, A.G., Mulvenna, M.D.: Discovering internet marketing intelligence through online analytical web usage mining. SIGMOD Record 27(4), 54–61 (1998)
Spiliopoulou, M., Pohle, C., Faulstich, L.: Improving the effectiveness of a web site with web usage mining. In: WEBKDD, pp. 142–162 (1999)
Srivastava, J., Cooley, R., Deshpande, M., Tan, P.-N.: Web usage mining: Discovery and applications of usage patterns from web data. SIGKDD Explorations 1(2), 12–23 (2000)
Mobasher, B., Dai, H., Luo, T., Nakagawa, M.: Using sequential and non-sequential patterns in predictive web usage mining tasks. In: ICDM, pp. 669–672 (2002)
Eirinaki, M., Vazirgiannis, M.: Web mining for web personalization. ACM Trans. Internet Techn. 3(1), 1–27 (2003)
Masseglia, F., Teisseire, M., Poncelet, P.: HDM: A client/server/engine architecture for real-time web usage mining. Knowl. Inf. Syst. 5(4), 439–465 (2003)
Huang, Y.-M., Kuo, Y.-H., Chen, J.-N., Jeng, Y.-L.: NP-miner: A real-time recommendation algorithm by using web usage mining. Knowl.-Based Syst. 19(4), 272–286 (2006)
Missaoui, R., Valtchev, P., Djeraba, C., Adda, M.: Toward recommendation based on ontology-powered web-usage mining. IEEE Internet Computing 11(4), 45–52 (2007)
Masseglia, F., Poncelet, P., Teisseire, M., Marascu, A.: Web usage mining: Extracting unexpected periods from web logs. In: DMKD (2007)
Mobasher, B.: Data mining for web personalization. In: The Adaptive Web, pp. 90–135 (2007)
Agrawal, R., Srikant, R.: Mining sequential patterns. In: ICDE, pp. 3–14 (1995)
Garofalakis, M.N., Rastogi, R., Shim, K.: SPIRIT: Sequential pattern mining with regular expression constraints. In: VLDB, pp. 223–234 (1999)
Yan, X., Han, J., Afshar, R.: CloSpan: Mining closed sequential patterns in large databases. In: SDM (2003)
NCSA HTTPd Development Team: NCSA HTTPd Online Document: TransferLog Directive (1995), http://hoohoo.ncsa.uiuc.edu/docs/setup/httpd/TransferLog.html
Li, D.H., Laurent, A., Poncelet, P.: Mining unexpected sequential patterns and rules. Technical Report RR-07027 (2007), Laboratoire d’Informatique de Robotique et de Microélectronique de Montpellier (2007)
Barrett, B.L.: Webalizer (1997-2006), http://www.mrunix.net/webalizer/
McGarry, K.: A survey of interestingness measures for knowledge discovery. Knowl. Eng. Rev. 20(1), 39–61 (2005)
Silberschatz, A., Tuzhilin, A.: On subjective measures of interestingness in knowledge discovery. In: KDD, pp. 275–281 (1995)
Padmanabhan, B., Tuzhilin, A.: On characterization and discovery of minimal unexpected patterns in rule discovery. IEEE Trans. Knowl. Data Eng. 18(2), 202–216 (2006)
Spiliopoulou, M.: Managing interesting rules in sequence mining. In: Żytkow, J.M., Rauch, J. (eds.) PKDD 1999. LNCS (LNAI), vol. 1704, pp. 554–560. Springer, Heidelberg (1999)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Li, D.(., Laurent, A., Poncelet, P. (2008). Mining Unexpected Web Usage Behaviors. In: Perner, P. (eds) Advances in Data Mining. Medical Applications, E-Commerce, Marketing, and Theoretical Aspects. ICDM 2008. Lecture Notes in Computer Science(), vol 5077. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70720-2_22
Download citation
DOI: https://doi.org/10.1007/978-3-540-70720-2_22
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-70717-2
Online ISBN: 978-3-540-70720-2
eBook Packages: Computer ScienceComputer Science (R0)