iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-540-70720-2_22
Mining Unexpected Web Usage Behaviors | SpringerLink
Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5077))

Included in the following conference series:

Abstract

Recently, the applications of Web usage mining are more and more concentrated on finding valuable user behaviors from Web navigation record data, where the sequential pattern model has been well adapted. However with the growth of the explored user behaviors, the decision makers will be more and more interested in unexpected behaviors, but not only in those already confirmed. In this paper, we present our approach USER, that finds unexpected sequences and implication rules from sequential data with user defined beliefs, for mining unexpected behaviors from Web access logs. Our experiments with the belief bases constructed from explored user behaviors show that our approach is useful to extract unexpected behaviors for improving the Web site structures and user experiences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Büchner, A.G., Mulvenna, M.D.: Discovering internet marketing intelligence through online analytical web usage mining. SIGMOD Record 27(4), 54–61 (1998)

    Article  Google Scholar 

  2. Spiliopoulou, M., Pohle, C., Faulstich, L.: Improving the effectiveness of a web site with web usage mining. In: WEBKDD, pp. 142–162 (1999)

    Google Scholar 

  3. Srivastava, J., Cooley, R., Deshpande, M., Tan, P.-N.: Web usage mining: Discovery and applications of usage patterns from web data. SIGKDD Explorations 1(2), 12–23 (2000)

    Article  Google Scholar 

  4. Mobasher, B., Dai, H., Luo, T., Nakagawa, M.: Using sequential and non-sequential patterns in predictive web usage mining tasks. In: ICDM, pp. 669–672 (2002)

    Google Scholar 

  5. Eirinaki, M., Vazirgiannis, M.: Web mining for web personalization. ACM Trans. Internet Techn. 3(1), 1–27 (2003)

    Article  Google Scholar 

  6. Masseglia, F., Teisseire, M., Poncelet, P.: HDM: A client/server/engine architecture for real-time web usage mining. Knowl. Inf. Syst. 5(4), 439–465 (2003)

    Article  Google Scholar 

  7. Huang, Y.-M., Kuo, Y.-H., Chen, J.-N., Jeng, Y.-L.: NP-miner: A real-time recommendation algorithm by using web usage mining. Knowl.-Based Syst. 19(4), 272–286 (2006)

    Article  Google Scholar 

  8. Missaoui, R., Valtchev, P., Djeraba, C., Adda, M.: Toward recommendation based on ontology-powered web-usage mining. IEEE Internet Computing 11(4), 45–52 (2007)

    Article  Google Scholar 

  9. Masseglia, F., Poncelet, P., Teisseire, M., Marascu, A.: Web usage mining: Extracting unexpected periods from web logs. In: DMKD (2007)

    Google Scholar 

  10. Mobasher, B.: Data mining for web personalization. In: The Adaptive Web, pp. 90–135 (2007)

    Google Scholar 

  11. Agrawal, R., Srikant, R.: Mining sequential patterns. In: ICDE, pp. 3–14 (1995)

    Google Scholar 

  12. Garofalakis, M.N., Rastogi, R., Shim, K.: SPIRIT: Sequential pattern mining with regular expression constraints. In: VLDB, pp. 223–234 (1999)

    Google Scholar 

  13. Yan, X., Han, J., Afshar, R.: CloSpan: Mining closed sequential patterns in large databases. In: SDM (2003)

    Google Scholar 

  14. NCSA HTTPd Development Team: NCSA HTTPd Online Document: TransferLog Directive (1995), http://hoohoo.ncsa.uiuc.edu/docs/setup/httpd/TransferLog.html

  15. Li, D.H., Laurent, A., Poncelet, P.: Mining unexpected sequential patterns and rules. Technical Report RR-07027 (2007), Laboratoire d’Informatique de Robotique et de Microélectronique de Montpellier (2007)

    Google Scholar 

  16. Barrett, B.L.: Webalizer (1997-2006), http://www.mrunix.net/webalizer/

  17. McGarry, K.: A survey of interestingness measures for knowledge discovery. Knowl. Eng. Rev. 20(1), 39–61 (2005)

    Article  Google Scholar 

  18. Silberschatz, A., Tuzhilin, A.: On subjective measures of interestingness in knowledge discovery. In: KDD, pp. 275–281 (1995)

    Google Scholar 

  19. Padmanabhan, B., Tuzhilin, A.: On characterization and discovery of minimal unexpected patterns in rule discovery. IEEE Trans. Knowl. Data Eng. 18(2), 202–216 (2006)

    Article  Google Scholar 

  20. Spiliopoulou, M.: Managing interesting rules in sequence mining. In: Żytkow, J.M., Rauch, J. (eds.) PKDD 1999. LNCS (LNAI), vol. 1704, pp. 554–560. Springer, Heidelberg (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Petra Perner

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, D.(., Laurent, A., Poncelet, P. (2008). Mining Unexpected Web Usage Behaviors. In: Perner, P. (eds) Advances in Data Mining. Medical Applications, E-Commerce, Marketing, and Theoretical Aspects. ICDM 2008. Lecture Notes in Computer Science(), vol 5077. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70720-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-70720-2_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-70717-2

  • Online ISBN: 978-3-540-70720-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics