iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-540-68636-1_4
Semantic Discriminative Projections for Image Retrieval | SpringerLink
Skip to main content

Semantic Discriminative Projections for Image Retrieval

  • Conference paper
Information Retrieval Technology (AIRS 2008)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4993))

Included in the following conference series:

  • 1444 Accesses

Abstract

Subspace learning has attracted much attention in image retrieval. In this paper, we present a subspace learning approach called Semantic Discriminative Projections (SDP), which learns the semantic subspace through integrating the descriptive information and discriminative information. We first construct one graph to characterize the similarity of contented-based features, another to describe the semantic dissimilarity. Then we formulate constrained optimization problem with a penalized difference form. Therefore, we can avoid the singularity problem and get the optimal dimensionality while learning a semantic subspace. Furthermore, SDP may be conducted in the original space or in the reproducing kernel Hilbert space into which images are mapped. This gives rise to kernel SDP. We investigate extensive experiments to verify the effectiveness of our approach. Experimental results show that our approach achieves better retrieval performance than state-of-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Rui, Y., Huang, T.S., Chang, S.F.: Image retrieval: current techniques, promising directions and open issues. Journal of Visual Communication and Image Representation 10(4), 39–62 (1999)

    Article  Google Scholar 

  2. Smeulders, A.W.M., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-based image retrieval at the end of the early years. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(12), 1349–1380 (2000)

    Article  Google Scholar 

  3. Datta, R., Joshi, D., Li, J., Wang, J.Z.: Image Retrieval: Ideas, Influences, and Trends of the New Age. ACM Computing Surveys 39(20), 1–77 (2007)

    Google Scholar 

  4. Liu, Y., Zhang, D.S., Lu, G.J., Ma, W.Y.: Asurvey of content-based image retrieval with high-level semantics. Pattern Recognition 40(1), 262–282 (2007)

    Article  MATH  Google Scholar 

  5. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science 290(5500), 2319–2323 (2000)

    Article  Google Scholar 

  6. Saul, L.K., Roweis, S.T.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)

    Article  Google Scholar 

  7. Belkin, M., Niyogi, P.: Laplacian eigenmaps and spectral techniques for embedding and clustering. Advances in Neural Information Processing Systems 14, 585–591 (2002)

    Google Scholar 

  8. Cox, T., Cox, M.: Multidimensional Scalling (1994)

    Google Scholar 

  9. He, X.F.: Laplacian Eigenmap for Image Retrieval. Master’s thesis, Computer Science Department, The University of Chicago (2002)

    Google Scholar 

  10. Chen, H.T., Chang, H.W., Liu, T.L.: Local discriminant embedding and its variants. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 846–853 (2005)

    Google Scholar 

  11. Nie, F.P., Xiang, S.M., Song, Y.Q., Zhang, C.S.: Optimal Dimensionality Discriminant Analysis and Its Application to Image Recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, USA, June17-22, pp. 1–8 (2007)

    Google Scholar 

  12. Scholkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge (2001)

    Google Scholar 

  13. He, X.F.: Locality Preserving Projections. PhD thesis, Computer Science Department, the University of Chicago (2005)

    Google Scholar 

  14. Swain, M.J., Ballard, D.H.: Color indexing. International Journal of Computer Vision 7(1), 11–32 (1991)

    Article  Google Scholar 

  15. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(7), 971–987 (2002)

    Article  Google Scholar 

  16. Stricker, M., Orengo, M.: Similarity of color images. In: Proceedings SPIE Storage and Retrieval for Image and Video Databases, San Jose, CA, USA, vol. 2420, pp. 381–392 (1995)

    Google Scholar 

  17. Smith, J.R., Chang, S.F.: Transform features for texture classification and discrimination inlarge image databases. In: IEEE International Conference Image Processing, vol. 3, pp. 407–411 (1994)

    Google Scholar 

  18. Muller, H., Marchand-Maillet, S., Pun, T.: The truth about corel-evaluation in image retrieval. In: Proceedings of the International Conference on Image and Video Retrieval, pp. 38–49. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  19. Smith, J.R., Chang, S.F.: Tools and techniques for color image retrieval. In: Storage & Retrieval for Image and Video Databases IV, vol. 2670, pp. 426–437 (1996)

    Google Scholar 

  20. Tuytelaars, T., Van Gool, L., et al.: Content-based image retrieval based on local affinely invariant regions. In: Int. Conf. on Visual Information Systems, pp. 493–500. Springer, Heidelberg (1999)

    Google Scholar 

  21. Jing, F., Li, M., Zhang, H.J., Zhang, B.: An effective region-based image retrieval framework. In: Proceedings of the tenth ACM international conference on Multimedia, pp. 456–465. ACM Press, New York (2002)

    Chapter  Google Scholar 

  22. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(10), 1615–1630 (2005)

    Article  Google Scholar 

  23. Xia, J., Yeung, D.Y., Dai, G.: Local Discriminant Embedding with Tensor representation. In: IEEE International Conference on Image Processing, pp. 929–932 (2006)

    Google Scholar 

  24. He, X.F., Cai, D., Niyogi, P.: Tensor subspace analysis. Advances in Neural Information Processing Systems 18 (2005)

    Google Scholar 

  25. He, X.F.: Incremental semi-supervised subspace learning for image retrieval. In: Proceedings of the 12th annual ACM international conference on Multimedia, pp. 2–8. ACM Press, New York (2004)

    Chapter  Google Scholar 

  26. Lin, Y.Y., Liu, T.L., Chen, H.T.: Semantic manifold learning for image retrieval. In: Proceedings of the 13th annual ACM international conference on Multimedia, pp. 249–258. ACM Press, New York (2005)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Hang Li Ting Liu Wei-Ying Ma Tetsuya Sakai Kam-Fai Wong Guodong Zhou

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Song, HP., Yang, QS., Zhan, YW. (2008). Semantic Discriminative Projections for Image Retrieval. In: Li, H., Liu, T., Ma, WY., Sakai, T., Wong, KF., Zhou, G. (eds) Information Retrieval Technology. AIRS 2008. Lecture Notes in Computer Science, vol 4993. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68636-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68636-1_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68633-0

  • Online ISBN: 978-3-540-68636-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics