Abstract
Subspace learning has attracted much attention in image retrieval. In this paper, we present a subspace learning approach called Semantic Discriminative Projections (SDP), which learns the semantic subspace through integrating the descriptive information and discriminative information. We first construct one graph to characterize the similarity of contented-based features, another to describe the semantic dissimilarity. Then we formulate constrained optimization problem with a penalized difference form. Therefore, we can avoid the singularity problem and get the optimal dimensionality while learning a semantic subspace. Furthermore, SDP may be conducted in the original space or in the reproducing kernel Hilbert space into which images are mapped. This gives rise to kernel SDP. We investigate extensive experiments to verify the effectiveness of our approach. Experimental results show that our approach achieves better retrieval performance than state-of-art methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Rui, Y., Huang, T.S., Chang, S.F.: Image retrieval: current techniques, promising directions and open issues. Journal of Visual Communication and Image Representation 10(4), 39–62 (1999)
Smeulders, A.W.M., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-based image retrieval at the end of the early years. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(12), 1349–1380 (2000)
Datta, R., Joshi, D., Li, J., Wang, J.Z.: Image Retrieval: Ideas, Influences, and Trends of the New Age. ACM Computing Surveys 39(20), 1–77 (2007)
Liu, Y., Zhang, D.S., Lu, G.J., Ma, W.Y.: Asurvey of content-based image retrieval with high-level semantics. Pattern Recognition 40(1), 262–282 (2007)
Tenenbaum, J.B., de Silva, V., Langford, J.C.: A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science 290(5500), 2319–2323 (2000)
Saul, L.K., Roweis, S.T.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)
Belkin, M., Niyogi, P.: Laplacian eigenmaps and spectral techniques for embedding and clustering. Advances in Neural Information Processing Systems 14, 585–591 (2002)
Cox, T., Cox, M.: Multidimensional Scalling (1994)
He, X.F.: Laplacian Eigenmap for Image Retrieval. Master’s thesis, Computer Science Department, The University of Chicago (2002)
Chen, H.T., Chang, H.W., Liu, T.L.: Local discriminant embedding and its variants. In: IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 846–853 (2005)
Nie, F.P., Xiang, S.M., Song, Y.Q., Zhang, C.S.: Optimal Dimensionality Discriminant Analysis and Its Application to Image Recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, USA, June17-22, pp. 1–8 (2007)
Scholkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge (2001)
He, X.F.: Locality Preserving Projections. PhD thesis, Computer Science Department, the University of Chicago (2005)
Swain, M.J., Ballard, D.H.: Color indexing. International Journal of Computer Vision 7(1), 11–32 (1991)
Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(7), 971–987 (2002)
Stricker, M., Orengo, M.: Similarity of color images. In: Proceedings SPIE Storage and Retrieval for Image and Video Databases, San Jose, CA, USA, vol. 2420, pp. 381–392 (1995)
Smith, J.R., Chang, S.F.: Transform features for texture classification and discrimination inlarge image databases. In: IEEE International Conference Image Processing, vol. 3, pp. 407–411 (1994)
Muller, H., Marchand-Maillet, S., Pun, T.: The truth about corel-evaluation in image retrieval. In: Proceedings of the International Conference on Image and Video Retrieval, pp. 38–49. Springer, Heidelberg (2002)
Smith, J.R., Chang, S.F.: Tools and techniques for color image retrieval. In: Storage & Retrieval for Image and Video Databases IV, vol. 2670, pp. 426–437 (1996)
Tuytelaars, T., Van Gool, L., et al.: Content-based image retrieval based on local affinely invariant regions. In: Int. Conf. on Visual Information Systems, pp. 493–500. Springer, Heidelberg (1999)
Jing, F., Li, M., Zhang, H.J., Zhang, B.: An effective region-based image retrieval framework. In: Proceedings of the tenth ACM international conference on Multimedia, pp. 456–465. ACM Press, New York (2002)
Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(10), 1615–1630 (2005)
Xia, J., Yeung, D.Y., Dai, G.: Local Discriminant Embedding with Tensor representation. In: IEEE International Conference on Image Processing, pp. 929–932 (2006)
He, X.F., Cai, D., Niyogi, P.: Tensor subspace analysis. Advances in Neural Information Processing Systems 18 (2005)
He, X.F.: Incremental semi-supervised subspace learning for image retrieval. In: Proceedings of the 12th annual ACM international conference on Multimedia, pp. 2–8. ACM Press, New York (2004)
Lin, Y.Y., Liu, T.L., Chen, H.T.: Semantic manifold learning for image retrieval. In: Proceedings of the 13th annual ACM international conference on Multimedia, pp. 249–258. ACM Press, New York (2005)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Song, HP., Yang, QS., Zhan, YW. (2008). Semantic Discriminative Projections for Image Retrieval. In: Li, H., Liu, T., Ma, WY., Sakai, T., Wong, KF., Zhou, G. (eds) Information Retrieval Technology. AIRS 2008. Lecture Notes in Computer Science, vol 4993. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68636-1_4
Download citation
DOI: https://doi.org/10.1007/978-3-540-68636-1_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-68633-0
Online ISBN: 978-3-540-68636-1
eBook Packages: Computer ScienceComputer Science (R0)