iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-540-68405-3_12
An Experimental Study of Weighted k-Link Shortest Path Algorithms | SpringerLink
Skip to main content

An Experimental Study of Weighted k-Link Shortest Path Algorithms

  • Chapter
Algorithmic Foundation of Robotics VII

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 47))

  • 1575 Accesses

Abstract

We consider the problem of computing a minimum-weight polygonal path between two points in a weighted polygonal subdivision, subject to the constraint that the path have few segments (links). We give an algorithm that generates paths of weighted length at most (1 + ε) times the weight of a minimum-cost k-link path, for any fixed ε> 0, while using at most 2k − 1 links. This is an improvement over the previous (1 + ε)-approximation algorithm, which used at most 5k − 2 links. Further, we have implemented our new algorithm and we have conducted a performance study of these algorithms (old and new) on a variety of real-world and synthetic data, comparing not only the efficiency but also the quality of paths generated using these algorithms. We also consider the implications of these results on the practical usage of these algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aleksandrov, L., Lanthier, M., Maheshwari, A., Sack, J.-R.: An ε-approximation algorithm for weighted shortest paths on polyhedral surfaces. In: Arnborg, S. (ed.) SWAT 1998. LNCS, vol. 1432, pp. 11–22. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  2. Aleksandrov, L., Maheshwari, A., Sack, J.-R.: Approximation algorithms for geometric shortest path problems. In: Proc. 32nd ACM Sympos. Theory Computing, pp. 286–295 (2000)

    Google Scholar 

  3. Aleksandrov, L., Maheshwari, A., Sack, J.-R.: Determining approximate shortest paths on weighted polyhedral surfaces. Journal of the ACM 52(1), 25–53 (2005)

    Article  MathSciNet  Google Scholar 

  4. Arkin, E.M., Mitchell, J.S.B., Piatko, C.D.: Bicriteria shortest path problems in the plane. In: Proc. 3rd Canadian Conf. Computational Geometry, pp. 153–156 (1991)

    Google Scholar 

  5. Chen, D.Z., Daescu, O., Hu, X., Wu, X., Xu, J.: Determining an optimal penetration among weighted regions in two and three dimensions. Journal of Combinatorial Optimization 5(1), 59–79 (2001)

    Article  MathSciNet  Google Scholar 

  6. Chen, D.Z., Hu, X., Xu, J.: Optimal beam penetration in two and three dimensions. Journal of Combinatorial Optimization 7(2), 111–136 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. Daescu, O.: Improved optimal weighted links algorithms. In: Proc. ICCS 2nd International Workshop on Computational Geometry and Applications, pp. 65–74 (2002)

    Google Scholar 

  8. Daescu, O., Luo, J.: Proximity problems on line segments spanned by points. In: Proc. 17th Canadian Conf. Computational Geometry, pp. 224–228 (2005)

    Google Scholar 

  9. Daescu, O., Mitchell, J.S.B., Ntafos, S., Palmer, J.D., Yap, C.K.: k-link shortest paths in weighted subdivisions. In: Proc. 9th Workshop on Algorithms and Data Structures, pp. 325–337 (2005)

    Google Scholar 

  10. Krozel, J., Lee, C., Mitchell, J.S.B.: Estimating time of arrival in heavy weather conditions. In: Proc. AIAA Guidance, Navigation, and Control, pp. 1481–1495 (1999)

    Google Scholar 

  11. Lanthier, M., Maheshwari, A., Sack, J.-R.: Approximating weighted shortest paths on polyhedral surfaces. In: Proc. 13th ACM Sympos. Computational Geometry, pp. 274–283 (1997)

    Google Scholar 

  12. Lanthier, M., Maheshwari, A., Sack, J.-R.: Approximating shortest paths on weighted polyhedral surfaces. Algorithmica 30(4), 527–562 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. Mata, C., Mitchell, J.S.B.: A new algorithm for computing shortest paths in weighted planar subdivisions. In: Proc. 13th ACM Sympos. Computational Geometry, pp. 264–273 (1997)

    Google Scholar 

  14. Mitchell, J.S.B.: Geometric shortest paths and network optimization. In: Sack, J.-R., Urrutia, J. (eds.) Handbook of Computational Geometry, Elsevier Science, Amsterdam (2000)

    Google Scholar 

  15. Mitchell, J.S.B.: Shortest paths and networks. In: Goodman, J.E., O’Rourke, J. (eds.) Handbook of Discrete and Computational Geometry, ch. 27, 2nd edn., pp. 607–641. Chapman & Hall/CRC, Boca Raton (2004)

    Google Scholar 

  16. Mitchell, J.S.B., Papadimitriou, C.H.: The weighted region problem: Finding shortest paths through a weighted planar subdivision. Journal of the ACM 38(1), 18–73 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  17. Mitchell, J.S.B., Piatko, C.D., Arkin, E.M.: Computing a shortest k-link path in a polygon. In: Proc. 33rd IEEE Sympos. Foundations Computer Science, pp. 573–582 (1992)

    Google Scholar 

  18. National Library of Medicine. The visible human project, http://www.nlm.nih.gov/research/visible

  19. Piatko, C.D.: Geometric Bicriteria Optimal Path Problems. Ph.D. thesis, Computer Science, Cornell University (1993)

    Google Scholar 

  20. Shewchuk, J.R.: Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator. In: Lin, M.C., Manocha, D. (eds.) FCRC-WS 1996 and WACG 1996. LNCS, vol. 1148, pp. 203–222. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  21. Sun, Z., Reif, J.H.: Adaptive and compact discretization for weighted region optimal path finding. In: Lingas, A., Nilsson, B.J. (eds.) FCT 2003. LNCS, vol. 2751, pp. 258–270. Springer, Heidelberg (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Srinivas Akella Nancy M. Amato Wesley H. Huang Bud Mishra

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Daescu, O., Mitchell, J.S.B., Ntafos, S., Palmer, J.D., Yap, C.K. (2008). An Experimental Study of Weighted k-Link Shortest Path Algorithms. In: Akella, S., Amato, N.M., Huang, W.H., Mishra, B. (eds) Algorithmic Foundation of Robotics VII. Springer Tracts in Advanced Robotics, vol 47. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68405-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68405-3_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68404-6

  • Online ISBN: 978-3-540-68405-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics