iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-540-33265-7_5
Skeletal Structures | SpringerLink
Skip to main content

Shape Descriptors are compact and expressive representations of objects suitable for solving problems like recognition, classification, or retrieval of shapes, tasks that are computationally expensive if performed on huge data sets. Skeletal structures are a particular class of shape descriptors, which attempt to quantify shapes in ways that agree with human intuition. In fact, they represent the essential structure of objects and the way basic components connect to form a whole.

In the large amount of literature devoted to a wide variety of skeletal structures, this Chapter provides a concise and non-exhaustive introduction to the subject: indeed the first structural descriptor, the medial axis, dates back to 1967, which means forty years of literature on the topic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. O. Aichholzer, D. Alberts, F. Aurenhammer, and B. Gartner. A novel type of skeleton for polygons. Journal of Universal Computer Science, 1:752-761, 1995.

    MathSciNet  Google Scholar 

  2. N. Amenta and M. Bern. Surface reconstruction by Voronoi filtering. Discrete and Computational Geometry, 22:481-504, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  3. N. Amenta, S. Choi, and R.K. Kolluri. The power crust, unions of balls, and the medial axis transform. Computational Geometry: Theory and Applications, 19:127-153, 2001.

    MATH  MathSciNet  Google Scholar 

  4. C. Arcelli and G. Sanniti di Baja. Euclidean skeleton via center-of-maximal-disc extraction. Image and Vision Computing, 11:163-173, 1993.

    Article  Google Scholar 

  5. D. Attali. Squelettes et graphes de Voronoi 2-D et 3-D. PhD thesis, University Joseph Fourier, 1995.

    Google Scholar 

  6. D. Attali, J.-D. Boissonnat, and H. Edelsbrunner. Stability and computation of medial axes — A state-of-the-art report. In T. Möller, B. Hamann, and B. Russell, editors, Mathematical Foundations of Scientific Visualization, Computer Graphics, and Massive Data Exploration. Springer-Verlag, 2005. To appear.

    Google Scholar 

  7. D. Attali and J.D. Boissonnat. Complexity of the Delaunay triangulation of points on polyhedral surfaces. Discrete and Computational Geometry, 30(3):437-452, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  8. D. Attali and J.D. Boissonnat. A linear bound on the complexity of the Delaunay triangulation of points on polyhedral surfaces. Discrete and Computational Geometry, 31:369-384, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  9. D. Attali, J.D. Boissonnat, and A. Lieutier. Complexity of the Delaunay triangulation of points on surfaces: the smooth case. In SCG ’03: Proc. of the 19th Annual Symposium on Computational Geometry 2003, pages 201-210. ACM Press, 2003.

    Google Scholar 

  10. D. Attali and A. Montanvert. Modeling noise for a better simplification of skeletons. In ICIP ’96: Proc. of the International Conference on Image Processing, volume 3, pages 13-16, 1996.

    Article  Google Scholar 

  11. M. Attene, S. Biasotti, and M. Spagnuolo. Shape understanding by contour-driven retiling. The Visual Computer, 19(2-3):127-138, 2003.

    MATH  Google Scholar 

  12. F. Aurenhammer and H. Imai. Geometric relations among Voronoi diagrams. Geometria Dedicata, 27:65-75, 1988.

    MATH  MathSciNet  Google Scholar 

  13. U. Axen and H. Edelsbrunner. Auditory Morse analysis of triangulated manifolds. In Mathematical Visualization, pages 223-236. Springer-Verlag, 1998.

    Google Scholar 

  14. Ulrike Axen. Computing Morse functions on triangulated manifolds. In SODA ’99: Proc. of the 10th ACM-SIAM Symposium on Discrete Algoritms 1999, pages 850-851. ACM Press, 1999.

    Google Scholar 

  15. M. Bern, D. Eppstein, P.K. Agarwal, N. Amenta, P. Chew, T. Dey, D.P. Dobkin, H. Edelsbrunner, C. Grimm, L.J. Guibas, J. Harer, J. Hass, A. Hicks, C.K. Johnson, G. Lerman, D. Letscher, P. Plassmann, E. Sedgwick, J. Snoeyink, J. Weeks, C. Yap, and D. Zorin. Emerging challenges in computational topology. In Report from the NSF-funded Workshop on Computational Topology, 1999.

    Google Scholar 

  16. S. Biasotti. Computational Topology Methods for Shape Modelling Applications. PhD thesis, Universit à degli Studi di Genova, May 2004.

    Google Scholar 

  17. S. Biasotti. Reeb graph representation of surfaces with boundary. In SMI ’04: Proc. of Shape Modeling Applications 2004, pages 371-374, Los Alamitos, Jun 2004. IEEE Computer Society.

    Chapter  Google Scholar 

  18. S. Biasotti, B. Falcidieno, and M. Spagnuolo. Surface shape understanding based on extended Reeb graphs. In Topological Data Structures for Surfaces: An Introduction for Geographical Information Science, pages 87-103. John Wiley and Sons, 2004.

    Google Scholar 

  19. S. Biasotti, L. De Floriani, B. Falcidieno, and L. Papaleo. Morphological representations of scalar fields. In Shape Analysis and Structuring. Springer, 2007.

    Google Scholar 

  20. S. Biasotti, S. Marini, M. Mortara, and G. Patane. An overview on properties and efficacy of topological skeletons in shape modelling. In M.S. Kim, editor, SMI ’03: Proc. of Shape Modeling International 2003, pages 245-254, Los Alamitos, May 2003. IEEE Computer Society.

    Chapter  Google Scholar 

  21. H. Blum. A transformation for extracting new descriptors of shape. In Weiant Wathen Dunn, editor, Models for the Perception of Speech and Visual Form. Proc. of a Symposium, pages 362-380, Cambridge MA, Nov 1967. MIT Press.

    Google Scholar 

  22. J.D. Boissonnat and F. Cazals. Natural neighbor coordinates of points on a surface. Computational Geometry-Theory and Applications, 19(2-3):155-173, 2001.

    MATH  MathSciNet  Google Scholar 

  23. J.D. Boissonnat and M. Karavelas. On the combinatorial complexity of Euclidean Voronoi cells and convex hulls of d-dimensional spheres. In SODA ’03: Proc. of the 14th ACM-SIAM Symposium on Discrete Algoritms, pages 305-312. ACM Press, 2003.

    Google Scholar 

  24. G. Borgefors. Distance transformations in digital images. Computer Vision, Graphics, and Image Processing, 34:344-371, 1986.

    Article  Google Scholar 

  25. G. Borgefors. On digital distance transform in three dimensions. Computer Vision and Image Understanding, 64(3):368-376, 1996.

    Article  Google Scholar 

  26. G. Borgefors, I. Nyström, G. Sanniti di Baja, and S. Svensson. Simplification of 3D skeletons using distance information. In L. J. Latecki, R. A. Melter, D. M. Mount, and A.Y. Wu, editors, Proc. of SPIE - Vision Geometry IX, volume 4117, pages 300-309, San Diego - USA, 2000.

    Google Scholar 

  27. J.W. Brandt. Convergence and continuity criteria for discrete approximations of the continuous planar skeletons. CVGIP: Image Understanding, 59:116-124, 1994.

    Article  Google Scholar 

  28. J.W. Brandt and V.R. Algazi. Continuous skeleton computation by Voronoi diagram. CVGIP: Image Understanding, 55:329-337, 1992.

    Article  MATH  Google Scholar 

  29. C. Burnikel. Exact Computation of Voronoi Diagrams and Line Segment Intersections. Ph.D thesis, Universit ät des Saarlandes, March 1996.

    Google Scholar 

  30. C. Arcelli and G. Sanniti di Baja. A thinning algorithm based on prominence detection. Pattern Recognition, 13(3):225-235, 1981.

    Article  Google Scholar 

  31. C.Arcelli and G. Sanniti di Baja. Skeletons of planar patterns. In T.Y. Kong and A. Rosenfeld, editors, Topological Algorithms for Digital Image Processing, pages 99-143. North-Holland, 1996.

    Google Scholar 

  32. H. Carr, J. Snoeyink, and U. Axen. Computing contour trees in all dimensions. In SODA ’00: Proc. of the 11th ACM-SIAM Symposium on Discrete Algoritms 2000, pages 918-926. ACM Press, 2000.

    Google Scholar 

  33. The CGAL 3.1 User Manual.

    Google Scholar 

  34. T.M. Chan, J. Snoeyink, and C.K. Yap. Primal dividing and dual pruning: Outputsensitive construction of 4-D polytopes and 3-D Voronoi diagrams. Discrete and Computational Geometry, 18:433-454, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  35. F. Chazal and A. Lieutier. Stability and homotopy of a subset of the medial axis. In SMA ’04: Proc. of the 9th ACM Symposium on Solid Modeling and Applications 2004, pages 243-248. ACM Press, 2004.

    Google Scholar 

  36. F. Chazal and R. Soufflet. Stability and finiteness properties of medial axis and skeleton. Journal on Control Dynamics and Systems, 10:149-170, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  37. S.W. Cheng and A. Vigneron. Motorcycle graphs and straight skeletons. In SODA ’02: Proc. of the 13th ACM-SIAM Symposium on Discrete Algoritms 2002, pages 156-165. ACM Press, 2002.

    Google Scholar 

  38. S.W. Choi and H.P. Seidel. Linear one-sided stability of MAT for weakly injective 3D domain. In SMA ’02: Proc. of the 7th ACM Symposium on Solid Modeling and Applications 2002, pages 344-355. ACM Press, 2002.

    Google Scholar 

  39. K. Cole-McLaughlin, H. Edelsbrunner, J. Harer, V. Natarajan, and V. Pascucci. Loops in Reeb graphs of 2-manifolds. In SCG ’03: Proc. of the 19th Annual Symposium on Computational Geometry 2003, pages 344-350. ACM Press, 2003.

    Google Scholar 

  40. N. D. Cornea, D. Silver, and P. Min. Curve-skeleton applications. In Proceedings IEEE Visualization, pages 95-102, 2005.

    Google Scholar 

  41. T. Culver. Computing the medial axis of a polyhedron reliably and efficiently. PhD thesis, University North Carolina, Chapel Hill, North Carolina, 2000.

    Google Scholar 

  42. T. Culver, J. Keyser, and D. Manocha. Exact computation of the medial axis of a polyhedron. Computer Aided Geometric Design, 21(1):65-98, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  43. T. Dey and j. Sun. Defining and computing curve-skeletons with medial geodesic function. In Proceedings of the Symposium on Geometry Processing, pages 143-152, 2006.

    Google Scholar 

  44. T.K. Dey and W. Zhao. Approximating the medial axis from the Voronoi diagram with a convergence guarantee. Algorithmica, 38, 2004.

    Google Scholar 

  45. G. Sanniti di Baja. Well-shaped, stable and reversible skeletons from the (3,4)-distance transform. Visual Communication and Image Representation, 5:107-115, 1994.

    Article  Google Scholar 

  46. G. Sanniti di Baja. Representing shape by line patterns. In P. Wang and A. Rosenfeld, editors, Advances in Structural and Syntactical Pattern Recognition, volume 1121 of Lecture Notes in Computer Science, pages 230-239. Springer-Verlag, 1996.

    Google Scholar 

  47. G. Sanniti di Baja and I. Nyström. Skeletonization in 3D discrete binary images. In C.H. Chen and P.S.P. Wang, editors, Handbook of Pattern Recognition and Computer Vision, Chapter 2.2, pages 137-156. World Scientific, Singapore, 3rd edition, January 2005.

    Google Scholar 

  48. G. Sanniti di Baja and E. Thiel. Skeletonization algorithm running on path-based distance maps. Image and Vision Computing, 14:47-57, 1997.

    Google Scholar 

  49. G.Sanniti di Baja and S. Svensson. Surface skeletons detected on the D6 distance transform. In F.J. Ferri et al., editor, Proc. of SSSPR’2000 - Advances in Pattern Recognition, volume 1121, pages 387-396, Alicante, 2000. LNCS, Springer-Verlag.

    Google Scholar 

  50. S. Dong, P.-T. Bremer, M. Garland, V. Pascucci, and J. Hart. Spectral surface quadrangulation. ACM Transactions on Graphics, 25(3):1057-1066, August 2006.

    Article  Google Scholar 

  51. D. Dutta and C. Hoffmann. On the skeleton of simple CSG objects. ASME J. of Mechanical Design, 115:87-94, 1993.

    Article  Google Scholar 

  52. H. Edelsbrunner, J. Harer, A. Mascarenhas, and V. Pascucci. Time-varying Reeb graphs for continuous space-time data. In Proceeding of the 20-th ACM Symposium on Computational Geometry, pages 366-372, 2004.

    Google Scholar 

  53. H. Edelsbrunner, J. Harer, and A. Zomorodian. Hierarchical Morse-Smale complexes for piecewise linear 2-manifolds. Discrete and Computational Geometry, 30:87-107, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  54. G. Elber and M. S. Kim. Bisector curves of planar rational curves. Computer Aided Design, 30(14):1089-1096, December 1998.

    Article  MATH  Google Scholar 

  55. G. Elber and M. S. Kim. The bisector surface of freeform rational space curves. ACM Trans. on Graphics, 17(1):32-50, January 1998.

    Article  Google Scholar 

  56. G. Elber and M. S. Kim. Computing rational bisectors. Computer Graphics and Applications, 19(6):76-81, November-December 1999.

    Article  Google Scholar 

  57. G. Elber and M. S. Kim. Rational bisectors of CSG primitives. In The Fifth ACM/IEEE Symposium on Solid Modeling and Applications, Ann Arbor, Michigan, pages 159-166, June 1999.

    Google Scholar 

  58. G. Elber and M. S. Kim. A computational model for nonrational bisector surfaces: Curve-surface and surface-surface bisectors. In Geometric Modeling and Processing 2000, Hong Kong, pages 364-372, April 2000.

    Google Scholar 

  59. G. Elber and M. S. Kim. Geometric constraint solver using multivariate rational spline functions. In The Sixth ACM/IEEE Symposium on Solid Modeling and Applications, Ann Arbor, Michigan, pages 1-10, June 2001.

    Google Scholar 

  60. D. Eppstein and J. Erickson. Raising roofs, crashing cycles, and playing pool: Applications of a data structure for finding pairwise interactions. Discrete and Computational Geometry, 22:569-592, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  61. R. Farouki and J. Johnstone. The bisector of a point and a plane parametric curve. Computer Aided Geometric Design, 11(2):117-151, April 1994.

    Article  MATH  MathSciNet  Google Scholar 

  62. R. Farouki and R. Ramamurthy. Specified-precision computation of curve/curve bisectors. Int. J. of Computational Geometry & Applications, 8(5-6):599-617, OctoberDecember 1998.

    Article  MATH  MathSciNet  Google Scholar 

  63. R. Farouki and R. Ramamurthy. Voronoi diagram and medial axis algorithm for planar domains with curved boundaries I. theoretical foundations. J. of Computational and Applied Mathematics, 102:119-141, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  64. R. Farouki and R. Ramamurthy. Voronoi diagram and medial axis algorithm for planar domains with curved boundaries II. detailed algorithm description. J. of Computational and Applied Mathematics, 102:119-141, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  65. S. Fortune. A sweepline algorithm for Voronoi diagrams. Algorithmica, 2:153-174, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  66. P. Giblin and B.B. Kimia. A formal classification of 3D medial axis points and their local geometry. In CVPR 2000: Proc. of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 2000, volume 1, pages 566-573, Los Alamitos, 2000. IEEE Computer Society.

    Google Scholar 

  67. P.J. Giblin and B.B. Kimia. On the local form and transitions of symmetry sets, medial axes, and shocks. International Journal of Computer Vision, 54:143-157, 2003.

    Article  MATH  Google Scholar 

  68. S. Goswami, T. K. Dey, and C. L. Bajaj. Identifying flat and tubular regions of a shape by unstable manifolds. In SPM ’06: Proceedings of the 2006 ACM symposium on Solid and physical modeling, pages 27-37, New York, NY, USA, 2006. ACM Press.

    Chapter  Google Scholar 

  69. A. Gramain. Topologie des surfaces. Presses Universitaires de France, 1971.

    Google Scholar 

  70. I. Hanniel, R. Muthuganapathy, G. Elber, and M. S. Kim. Precise Voronoi cell extraction of free-form rational planar closed curves. In ACM Symposium on Solid and Physical Modeling, pages 51-59, June 2005.

    Google Scholar 

  71. M. Held. Vroni: An engineering approach to the reliable and efficient computation of Voronoi diagrams of points and line segments. Computational Geometry: Theory and Applications, 18:95-123, 2001.

    MATH  MathSciNet  Google Scholar 

  72. F. Hetroy and D. Attali. Topological quadrangulations of closed triangulated surfaces using the Reeb graph. Graphical Models, 65(1-3):131-148, 2003.

    Article  MATH  Google Scholar 

  73. M. Hilaga, Y. Shinagawa, T. Kohmura, and T. L. Kunii. Topology matching for fully automatic similarity estimation of 3D shapes Los Angeles, CA. Computer graphics proceedings, annual conference series: SIGGRAPH conference proceedings, pages 203-212, Aug 2001.

    Google Scholar 

  74. D.S. Kim, Y. Cho, and D. Kim. Euclidean Voronoi diagram of 3D balls and its computation via tracing edges. In Computer Aided Design, pages 1412-1424, November 2005.

    Google Scholar 

  75. B. Kimia, A. Tannenbaum, and S. Zucker. Shapes, shocks, and deformations, I: The components of shape and the reaction-diffusion space. International Journal of Computer Vision, 15:189-224, 1995.

    Article  Google Scholar 

  76. F. Lazarus and A. Verroust. Level set diagrams of polyhedral objects. In W.F. Bronsvoort and D.C. Anderson, editors, SMA ’99: Proc. of the 5th ACM Symposium on Solid Modeling and Applications 1999, pages 130-140. ACM Press, 1999.

    Google Scholar 

  77. D. T. Lee. Medial axis transformation of a planar shape. IEEE Transactions on Pattern Analysis and Machine Intelligence, 4(4):363-369, 1982.

    Article  MATH  Google Scholar 

  78. A. Lieutier. Any open bounded subset of Rn has the same homotopy type as its medial axis. In Proc. 8th ACM Sympos. Solid Modeling Appl., pages 65-75. ACM Press, 2003.

    Google Scholar 

  79. G. Matheron. Examples of topological properties of skeletons. In Image Analysis and Mathematical Morphology, Volume 2: Theoretical Advances, pages 217-238. Academic Press, 1988.

    Google Scholar 

  80. J. Milnor. Morse Theory. Princeton University Press, New Jersey, 1963.

    MATH  Google Scholar 

  81. M. Mortara and G. Patané . Shape-covering for skeleton extraction. International Journal of Shape Modelling, 8:245-252, 2002.

    Article  Google Scholar 

  82. M. Mortara, G. Patane, M. Spagnuolo, B. Falcidieno, and J. Rossignac. Blowing bubbles for multi-scale analysis and decomposition of triangle meshes. Algorithmica, 38(1):227-248,2004.

    MathSciNet  Google Scholar 

  83. R.L. Ogniewicz. Skeleton-space: A multi-scale shape description combining region and boundary information. In CVPR ’94: Proc. of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 1994, pages 746-751, Los Alamitos, 1994. IEEE Computer Society.

    Google Scholar 

  84. R.L. Ogniewicz and O. Kubler. Hierarchic Voronoi skeletons. Pattern Recognition, 28:343-359, 1995.

    Article  Google Scholar 

  85. V. Pascucci and K. Cole-McLaughlin. Parallel computation of the topology of level sets. Algorithmica, 38:249-268, 2003.

    Article  MathSciNet  Google Scholar 

  86. M. Peternell. Geometric properties of bisector surfaces. In Graphical Models and Image Processing, 2000.

    Google Scholar 

  87. M. Ramanathan and B. Gurumoorthy. Constructing medial axis transform of planar domains with curved boundaries. Computer Aided Design, 35:619-632, 2002.

    Article  Google Scholar 

  88. M. Ramanathan and B. Gurumoorthy. Constructing medial axis transform of extruded and revolved 3D objects with free-form boundaries. Computer-Aided Design, 37 (13):1370-1387, 2005.

    Google Scholar 

  89. G. Reeb. Sur les points singuliers d’une forme de Pfaff compl ètement int égrable ou d’une fonction num érique. Comptes Rendus Hebdomadaires des S éances de l’Acad émie des Sciences, 222:847-849, 1946.

    MATH  MathSciNet  Google Scholar 

  90. A. Rosenfeld. Digital geometry: Introduction and bibliography. In Advances in Digital and Computational Geometry, 1998.

    Google Scholar 

  91. E. Sherbrooke, N. M. Patrikalakis, and F.-E. Wolter. Differential and topological properties of medial axis transforms. Graphical Models and Image Processing, 58:574-592, 1996.

    Article  Google Scholar 

  92. E.C. Sherbrooke, N.M. Patrikalakis, and E. Brisson. An algorithm for the medial axis transform of 3D polyhedral solids. IEEE Trans. on Visualization and Computer Graphics, 22:44-61, 1996.

    Article  Google Scholar 

  93. Y. Shinagawa and T.L. Kunii. Constructing a Reeb graph automatically from cross sections. IEEE Computer Graphics and Applications, 11:44-51, 1991.

    Article  Google Scholar 

  94. Y. Shinagawa, T.L. Kunii, and Y.L. Kergosien. Surface coding based on Morse theory. IEEE Computer Graphics and Applications, 11:66-78, 1991.

    Article  Google Scholar 

  95. S. Svensson and G. Sanniti di Baja. Simplifying curve skeletons in volume images. Computer Vision and Image Understanding, 90:242-257, 2003.

    Article  MATH  Google Scholar 

  96. S. Svensson, I. Nystr om, and G. Sanniti di Baja. Curve skeletonization of surfacelike objects in 3D images guided by voxel classification. Pattern Recognition Letters, 23(12):1419-1426, 2002.

    Article  MATH  Google Scholar 

  97. M. Tanase and R. C. Veltkamp. A straight skeleton approximating the medial axis. Lecture Notes in Computer Science, 3221:809-821, Sep 2004.

    Google Scholar 

  98. M. van Kreveld, R. Oostrum, C. Bajaj, V. Pascucci, and D. Schikore. Contour trees and small seed sets for isosurface transversal. In SCG ’97: Proc. of the 13th Annual Symposium on Computational Geometry 1997, pages 212-220. ACM Press, Jun 1997.

    Google Scholar 

  99. M. Wan, Z. Liang, Q. Ke, L. Hong, I. Bitter, and A. Kaufman. Automatic centerline extraction for virtual colonoscopy. IEEE Trans. on Medical Imaging, 21(12):1450-1460, December 2002.

    Google Scholar 

  100. N. Werghi, Y. Xiao, and J. P. Siebert. A functional-based segmentation of human body scans in arbitrary postures. IEEE Transactions on Systems, Man, and Cybernetics - Part B: Cybernetics, 36(1):153-165, 2006.

    Article  Google Scholar 

  101. F.E. Wolter. Cut locus & medial axis in global shape interrogation & representation. Technical Report Design Laboratory Memorandum 92-2, MIT, 1992.

    Google Scholar 

  102. Z. Wood, H. Hoppe, M. Desbrun, and P. Schroeder. Removing excess topology from isosurfaces. ACM Trans. on Graphics, 23:190-208, 2004.

    Article  Google Scholar 

  103. Z.J. Wood, M. Desbrun, P. Schroder, and D. Breen. Semi-regular mesh extraction from volumes. In VIS 2000: Proc. of IEEE Conference on Visualization 2000, pages 275-282, Los Alamitos, 2000. IEEE Computer Society.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Biasotti, S. et al. (2008). Skeletal Structures. In: De Floriani, L., Spagnuolo, M. (eds) Shape Analysis and Structuring. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-33265-7_5

Download citation

Publish with us

Policies and ethics