iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-540-32033-3_33
Proof-Producing Congruence Closure | SpringerLink
Skip to main content

Proof-Producing Congruence Closure

  • Conference paper
Term Rewriting and Applications (RTA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3467))

Included in the following conference series:

Abstract

Many applications of congruence closure nowadays require the ability of recovering, among the thousands of input equations, the small subset that caused the equivalence of a given pair of terms. For this purpose, here we introduce an incremental congruence closure algorithm that has an additional \(\mathit{Explain}\) operation.

First, two variations of union-find data structures with \(\mathit{Explain}\) are introduced. Then, these are applied inside a congruence closure algorithm with \(\mathit{Explain}\), where a k-step proof can be recovered in almost optimal time (quasi-linear in k), without increasing the overall O(n log n) runtime of the fastest known congruence closure algorithms.

This non-trivial (ground) equational reasoning result has been quite intensively sought after (see, e.g., [SD99,dMRS04,KS04]), and moreover has important applications to verification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Audemard, G., Bertoli, P., Cimatti, A., Kornilowicz, A., Sebastiani, R.: A SAT based approach for solving formulas over boolean and linear mathematical propositions. In: Voronkov, A. (ed.) CADE 2002. LNCS (LNAI), vol. 2392, pp. 195–210. Springer, Heidelberg (2002)

    Google Scholar 

  2. Barrett, C., Dill, D., Stump, A.: Checking satisfiability of first-order formulas by incremental translation into sat. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, p. 236. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  3. Bachmair, L., Tiwari, A.: Abstract congruence closure and specializations. In: McAllester, D. (ed.) CADE 2000. LNCS, vol. 1831, pp. 64–78. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  4. Cormen, T.T., Leiserson, C.E., Rivest, R.L.: Introduction to algorithms. MIT Press, Cambridge (1990)

    MATH  Google Scholar 

  5. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Comm. of the ACM 5(7), 394–397 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  6. de Moura, L., Rueß, H.: Lemmas on demand for satisfiability solvers. In: Procs. 5th Int. Symp. on the Theory and Applications of Satisfiability Testing, SAT 2002, pp. 244–251 (2002)

    Google Scholar 

  7. de Moura, L., Rueß, H., Shankar, N.: Justifying equality. In: Proc. of the Second Workshop on Pragmatics of Decision Procedures in Automated Reasoning, Cork, Ireland (2004)

    Google Scholar 

  8. Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal of the ACM 7, 201–215 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  9. Downey, P.J., Sethi, R., Tarjan, R.E.: Variations on the common subexpressions problem. J. of the Association for Computing Machinery 27(4), 758–771 (1980)

    MATH  MathSciNet  Google Scholar 

  10. Flanagan, C., Joshi, R., Ou, X., Saxe, J.B.: Theorem proving using lazy proof explanation. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 355–367. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  11. Ganzinger, H., Hagen, G., Nieuwenhuis, R., Oliveras, A., Tinelli, C.: DPLL(T): Fast decision procedures. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 175–188. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  12. Kapur, D.: Shostak’s congruence closure as completion. In: Comon, H. (ed.) RTA 1997. LNCS, vol. 1232, Springer, Heidelberg (1997)

    Google Scholar 

  13. Klapper, R., Stump, A.: Validated proof-producing decision procedures. In: Proceedings of the Second Workshop on Pragmatics of Decision Procedures in Automated Reasoning, Cork, Ireland (2004)

    Google Scholar 

  14. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an Efficient SAT Solver. In: Proc. 38th Design Automation Conference, DAC 2001 (2001)

    Google Scholar 

  15. Nelson, G., Oppen, D.C.: Fast decision procedures bases on congruence closure. Journal of the Association for Computing Machinery 27(2), 356–364 (1980)

    MATH  MathSciNet  Google Scholar 

  16. Nieuwenhuis, R., Oliveras, A.: Congruence closure with integer offsets. In: Y. Vardi, M., Voronkov, A. (eds.) LPAR 2003. LNCS, vol. 2850, pp. 78–90. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  17. Stump, A., Dill, D.L.: Generating proofs from a decision procedure. In: Pnueli, A., Traverso, P. (eds.) Proceedings of the FLoC Workshop on Run-Time Result Verification, Trento, Italy (1999)

    Google Scholar 

  18. Shostak, R.E.: An algorithm for reasoning about equality. Commun. ACM 21(7) (1978)

    Google Scholar 

  19. Tarjan, R.E.: Efficiency of a good but not linear set union algorithm. Journal of the ACM (JACM) 22(2), 215–225 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  20. Tarjan, R.E.: A class of algorithms that require nonlinear time to maintain disjoint sets. J. Comput. and Sys. Sci. 18(2), 110–127 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  21. Tiwari, A., Vigneron, L.: Implementation of Abstract Congruence Closure with randomly generated CC problem instances (2001), At http://www.csl.sri.com/users/tiwari

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nieuwenhuis, R., Oliveras, A. (2005). Proof-Producing Congruence Closure. In: Giesl, J. (eds) Term Rewriting and Applications. RTA 2005. Lecture Notes in Computer Science, vol 3467. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-32033-3_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-32033-3_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25596-3

  • Online ISBN: 978-3-540-32033-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics