iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-540-32033-3_24
Proving Positive Almost-Sure Termination | SpringerLink
Skip to main content

Proving Positive Almost-Sure Termination

  • Conference paper
Term Rewriting and Applications (RTA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3467))

Included in the following conference series:

Abstract

In order to extend the modeling capabilities of rewriting systems, it is rather natural to consider that the firing of rules can be subject to some probabilistic laws. Considering rewrite rules subject to probabilities leads to numerous questions about the underlying notions and results.

We focus here on the problem of termination of a set of probabilistic rewrite rules. A probabilistic rewrite system is said almost surely terminating if the probability that a derivation leads to a normal form is one. Such a system is said positively almost surely terminating if furthermore the mean length of a derivation is finite. We provide several results and techniques in order to prove positive almost sure termination of a given set of probabilistic rewrite rules. All these techniques subsume classical ones for non-probabilistic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  2. Balbo, G.: Introduction to Stochastic Petri nets. In: Brinksma, E., Hermanns, H., Katoen, J.-P. (eds.) EEF School 2000 and FMPA 2000. LNCS, vol. 2090, p. 84. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  3. Bournez, O., Hoyrup, M.: Rewriting Logic and Probabilities. In: Nieuwenhuis, R. (ed.) RTA 2003. LNCS, vol. 2706, pp. 61–75. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  4. Bournez, O., Kirchner, C.: Probabilistic Rewrite Strategies: Applications to ELAN. In: Tison, S. (ed.) RTA 2002. LNCS, vol. 2378, pp. 252–266. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  5. Brémaud, P.: Markov Chains, Gibbs Fields, Monte Carlo Simulation, and Queues. Springer, New York (2001)

    Google Scholar 

  6. de Alfaro, L.: Formal Verification of Probabilistic Systems. PhD thesis, Stanford University (1997)

    Google Scholar 

  7. Feller, W.: An Introduction to Probability Theory and its Applications, vol. 1. Wiley, Chichester (1968)

    MATH  Google Scholar 

  8. Foster, F.G.: On the Stochastic Matrices Associated with Certain Queuing Processes. The Annals of Mathematical Statistics 24, 355–360 (1953)

    Article  MATH  MathSciNet  Google Scholar 

  9. Frühwirth, T., Di Pierro, A., Wiklicky, H.: Toward Probabilistic Constraint Handling Rules. In: Abdennadher, S., Frühwirth, T. (eds.) RCoRP 2001 (2001)

    Google Scholar 

  10. Grimmett, G.: Probability Theory. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  11. Hansson, H.: Time and Probability in Formal Design of Distributed Systems. Series in Real-Time Safety Critical Systems. Elsevier, Amsterdam (1994)

    Google Scholar 

  12. Jones, C.: Probabilistic Non-determinism. PhD thesis, University of Edinburgh (1990)

    Google Scholar 

  13. Klop, J.W.: Term Rewriting Systems. In: Abramsky, S., Gabbay, D.M., Maibaum, T.S.E. (eds.) Handbook of Logic in Computer Science, vol. 2, ch. 1, pp. 1–117. Oxford University Press, Oxford (1992)

    Google Scholar 

  14. Kwiatkowska, M., Norman, G., Parker, D.: PRISM: Probabilistic Symbolic Model Checker. In: Field, T., Harrison, P.G., Bradley, J., Harder, U. (eds.) TOOLS 2002. LNCS, vol. 2324, p. 200. Springer, Heidelberg (2002)

    Google Scholar 

  15. Lynch, N.: Distributed Algorithms. Morgan Kaufmann Publishers, Inc., San Francisco (1997)

    Google Scholar 

  16. Martí-Oliet, N., Meseguer, J.: Rewriting Logic: Roadmap and Bibliography. Theoretical Computer Science 285(2), 121–154 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  17. Meseguer, J.: Conditional Rewriting Logic as a Unified Model of Concurrency. Theoretical Computer Science 96(1), 73–155 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  18. Nirman, K., Sen, K., Meseguer, J., Agha, G.: A Rewriting Based Model for Probabilistic Distributed Object Systems. In: Najm, E., Nestmann, U., Stevens, P. (eds.) FMOODS 2003. LNCS, vol. 2884, pp. 32–46. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  19. Panangaden: Does Combining Probability and Non-Determinism Makes Sense? Bulletin of the EATCS (2001)

    Google Scholar 

  20. Puternam, M.L.: Markov Decision Processes - Discrete Stochastic Dynamic Programming. Wiley Series in Probability and Mathematical Statistics. John Wiley & Sons, Chichester (1994)

    Google Scholar 

  21. Rudin, W.: Real and Complex Analysis, 3rd edn. McGraw-Hill, USA (1987)

    MATH  Google Scholar 

  22. Sanders, W.H., Meyer, J.F.: Stochastic Activity Networks: Formal Definitions and Concepts. In: Brinksma, E., Hermanns, H., Katoen, J.-P. (eds.) EEF School 2000 and FMPA 2000. LNCS, vol. 2090, p. 315. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  23. Schneider, M.: Self-stabilization. ACM Computing Surveys 25, 45–67 (1993)

    Article  Google Scholar 

  24. Segala, R., Lynch, N.: Probabilistic Simulations for Probabilistic Processes. In: Jonsson, B., Parrow, J. (eds.) CONCUR 1994. LNCS, vol. 836, p. 481. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  25. van Glabbeek, R., Smolka, S.A., Steffen, B., Tofts, C.M.N.: Reactive, Generative, and Stratified Models of Probabilistic Processes. In: LICS 1990, pp. 130–141. IEEE Computer Society Press, Los Alamitos (1990)

    Google Scholar 

  26. Vardi, M.Y.: Automatic Verification of Probabilistic Concurrent Finite-State Programs. In: FOCS 1985, pp. 327–338 (1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bournez, O., Garnier, F. (2005). Proving Positive Almost-Sure Termination. In: Giesl, J. (eds) Term Rewriting and Applications. RTA 2005. Lecture Notes in Computer Science, vol 3467. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-32033-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-32033-3_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-25596-3

  • Online ISBN: 978-3-540-32033-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics