iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-540-30549-1_46
Univariate and Multivariate Linear Regression Methods to Predict Interval-Valued Features | SpringerLink
Skip to main content

Univariate and Multivariate Linear Regression Methods to Predict Interval-Valued Features

  • Conference paper
AI 2004: Advances in Artificial Intelligence (AI 2004)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3339))

Included in the following conference series:

Abstract

This paper introduces two new approaches to fit a linear regression model on interval-valued data. Each example of the learning set is described by a feature vector where each feature value is an interval. In the first proposed approach, it is fitted two independent linear regression models, respectively, on the mid-point and range of the interval values assumed by the variables on the learning set. In the second approach, is fitted a multivariate linear regression models on these mid-point and range. The prediction of the lower and upper bound of the interval value of the dependent variable is accomplished from its mid-point and range which are estimated from the fitted linear regression models applied to the mid-point and range of each interval values of the independent variables. The evaluation of the proposed prediction methods is based on the average behavior of the root mean squared error and the determination coefficient in the framework of a Monte Carlo experiment in comparison with the method proposed by Billard and Diday [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bock, H.H., Diday, E.: Analysis of Symbolic Data: Exploratory Methods for Extracting Statistical Information from Complex Data. Springer, Heidelberg (2000)

    Google Scholar 

  2. Billard, L., Diday, E.: Regression Analysis for Interval-Valued Data. In: Kiers, H.A.L., et al. (eds.) Data Analysis, Classification and Related Methods: Proceedings of the Seventh Conference of the International Federation of Classification Societies, IFCS 2000, Namur (Belgium), vol. 1, pp. 369–374. Springer, Heidelberg (2000)

    Google Scholar 

  3. Billard, L., Diday, E.: Symbolic Regression Analysis. In: Jajuga, K., et al. (eds.) Classification, Clustering and Data Analysis: Proceedings of the Eighenth Conference of the International Federation of Classification Societies, IFCS-2002, Crakow (Poland), vol. 1, pp. 281–288. Springer, Heidelberg (2002)

    Google Scholar 

  4. Billard, L., Diday, E.: From the Statistics of Data to the Statistics of Knowledge: Symbolic Data Analysis. Journal of the American Statistical Association 98, 470–487 (2003)

    Article  MathSciNet  Google Scholar 

  5. Draper, N.R., Smith, H.: Applied Regression Analysis. John Wiley, New York (1981)

    MATH  Google Scholar 

  6. Montgomery, D.C., Peck, E.A.: Introduction to Linear Regression Analysis. John Wiley, New York (1982)

    MATH  Google Scholar 

  7. Scheffé, H.: The Analysis of Variance. John Wiley, New York (1959)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

de A. Lima Neto, E., de Carvalho, F.A.T., Tenorio, C.P. (2004). Univariate and Multivariate Linear Regression Methods to Predict Interval-Valued Features. In: Webb, G.I., Yu, X. (eds) AI 2004: Advances in Artificial Intelligence. AI 2004. Lecture Notes in Computer Science(), vol 3339. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30549-1_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30549-1_46

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24059-4

  • Online ISBN: 978-3-540-30549-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics