iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-540-30478-4_18
Multiple-Instance Case-Based Learning for Predictive Toxicology | SpringerLink
Skip to main content

Multiple-Instance Case-Based Learning for Predictive Toxicology

  • Conference paper
Knowledge Exploration in Life Science Informatics (KELSI 2004)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3303))

  • 319 Accesses

Abstract

Predictive toxicology is the task of building models capable of determining, with a certain degree of accuracy, the toxicity of chemical compounds. Machine Learning (ML) in general, and lazy learning techniques in particular, have been applied to the task of predictive toxicology. ML approaches differ in which kind of chemistry knowledge they use but all rely on some specific representation of chemical compounds. In this paper we deal with one specific issue of molecule representation, the multiplicity of descriptions that can be ascribed to a particular compound. We present a new approach to lazy learning, based on the notion of multiple-instance, which is capable of seamlessly working with multiple descriptions. Experimental analysis of this approach is presented using the Predictive Toxicology Challenge data set.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ames, B.N., McCann, J.: Detection of carcinogens as mutagens in the salmonella/ microsome test: Assay of 300 chemicals: Discussion. Proceedings of the National Academy of Sciences USA 73, 950–954 (1976)

    Article  Google Scholar 

  2. Armengol, E., Plaza, E.: Bottom-up induction of feature terms. Machine Learning 41(1), 259–294 (2000)

    Article  MATH  Google Scholar 

  3. Armengol, E., Plaza, E.: Relational case-based reasoning for carcinogenic activity prediction. Artificial Intelligence Review 20(1-2), 121–141 (2003)

    Article  Google Scholar 

  4. Armengol, E., Plaza, E.: Lazy learning for predictive toxicology based on a chemical ontology. In: Dubitzky, W., Azuaje, F.J. (eds.) Artificial Intelligence Methods and Tools for Systems Biology. Kluwer Academic Publishers, Dordrecht (2004) (in press)

    Google Scholar 

  5. Baurin, N., Marot, C., Mozziconacci, J.C., Morin-Allory, L.: Use of learning vector quantization and BCI fingerprints for the predictive toxicology challenge 2000-2001. In: Proceedings of the Predictive Toxicology Challenge Workshop, Freiburg, Germany (2001)

    Google Scholar 

  6. Blinova, V., Bobryinin, D., Finn, V., Kuznetsov, S., Pankratova, E.: Toxicology analysis by means of simple JSM method. Bioinformatics 19(10), 1201–1207 (2003)

    Article  Google Scholar 

  7. Blockeel, H., Driessens, K., Jacobs, N., Kosala, R., Raeymaekers, S., Ramon, J., Struyf, J., Van Laer, W., Verbaeten, S.: First order models for the predictive toxicology challenge 2001. In: Proceedings of the Predictive Toxicology Challenge Workshop, Freiburg, Germany (2001)

    Google Scholar 

  8. Chevaleyre, Y., Zucker, J.D.: Solving multiple-instance and multiple-part learning problems with decision trees and rule sets. In: Application to the Mutagenesis Problem, Morgan Kaufmann, San Francisco (1995)

    Google Scholar 

  9. Cohen, W.: Fast effective rule induction. In: Proceedings of the 12th International Conference on Machine Learning, pp. 204–214 (2001)

    Google Scholar 

  10. Dasarathy, B.V.: Nearest Neighbor (NN) Norms: NN Pattern Classification Techniques. IEEE Computer Society Press, Washington (1990)

    Google Scholar 

  11. Dietterich, T., Lathrop, R., Lozano-Perez, T.: Solving the multiple instance problem with axis-parallel rectangles. Artificial Intelligence Journal 89(1-2), 31–71 (1997)

    Article  MATH  Google Scholar 

  12. Edgar, G.A.: Measure, Topology, and Fractal Geometry. Springer Verlag, Heidelberg (1995)

    Google Scholar 

  13. Egan, J.P.: Signal Detection Theory and ROC Analysis. Series in Cognition and Perception. Academic Press, New York (1975)

    Google Scholar 

  14. Gonzalez, J., Holder, L., Cook, D.: Application of graph-based concept learning to the predictive toxicology domain. In: Proceedings of the Predictive Toxicology Challenge Workshop, Freiburg, Germany (2001)

    Google Scholar 

  15. Helma, C., Kramer, S.: A survey of the predictive toxicology challenge 2000- 2001. Bioinformatics 19(10), 1179–1182 (2003)

    Article  Google Scholar 

  16. Maron, O., Lozano-Perez, T.: A framework for multiple instance learning. Neural Information Processing Systems 10 (1998)

    Google Scholar 

  17. Owada, H., Koyama, M., Hoken, Y.: ILP-based rule induction for predicting carcinogenicity. In: Proceedings of the Predictive Toxicology Challenge Workshop, Freiburg, Germany (2001)

    Google Scholar 

  18. Provost, F., Fawcett, T.: Analysis and visualization of classifier performance:Comparison under imprecise class and cost distributions. In: Proceedings of the KDD 1997 (1997)

    Google Scholar 

  19. Srinivasan, A., Muggleton, S., King, R.D., Sternberg, M.J.E.: Mutagenesis: ILP experiments in a non-determinate biological domain. In: Proceedings of the Fourth Inductive Logic Programming Workshop (1994)

    Google Scholar 

  20. Toivonen, H., Srinivasan, A., King, R., Kramer, S., Helma, C.: Statistical evaluation of the predictive toxicology challenge, pp. 1183–1193 (2003)

    Google Scholar 

  21. Wettschereck, D., Dietterich, T.G.: Locally adaptive nearest neighbor algorithms. In: Cowan, J.D., Tesauro, G., Alspector, J. (eds.) Advances in Neural Information Processing Systems, vol. 6, pp. 184–191. Morgan Kaufmann Publishers, Inc, San Francisco (1994)

    Google Scholar 

  22. Zucker, J.: A framework for learning rules from multiple instance data. In: Langley, P. (ed.) European Conference on Machine Learning, pp. 1119–1125 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Armengol, E., Plaza, E. (2004). Multiple-Instance Case-Based Learning for Predictive Toxicology. In: López, J.A., Benfenati, E., Dubitzky, W. (eds) Knowledge Exploration in Life Science Informatics. KELSI 2004. Lecture Notes in Computer Science(), vol 3303. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30478-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30478-4_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23927-7

  • Online ISBN: 978-3-540-30478-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics