iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-540-28651-6_70
Topological Tree for Web Organisation, Discovery and Exploration | SpringerLink
Skip to main content

Topological Tree for Web Organisation, Discovery and Exploration

  • Conference paper
Intelligent Data Engineering and Automated Learning – IDEAL 2004 (IDEAL 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3177))

  • 1328 Accesses

Abstract

In this paper we focus on the organisation of web contents, which allows efficient browsing, searching and discovery. We propose a method that dynamically creates such a structure called Topological Tree. The tree is generated using an algorithm called Automated Topological Tree Organiser, which uses a set of hierarchically organised self-organising growing chains. Each chain fully adapts to a specific topic, where its number of subtopics is determined using entropy-based validation and cluster tendency schemes. The Topological Tree adapts to the natural underlying structure at each level in the hierarchy. The topology in the chains also relates close topics together, thus can be exploited to reduce the time needed for search and navigation. This method can be used to generate a web portal or directory where browsing and user comprehension are improved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Beil, F., Ester, M., Xu, X.: Frequent term-based text clustering. In: Proc. SIGKDD 2002, Edmonton, Canada, pp. 436–442 (2002)

    Google Scholar 

  2. El-Hamdouchi, A., Willett, P.: Techniques for the measurement of clustering tendency in document retrieval systems. Journal of Information Science 13(6), 361–365 (1987)

    Article  Google Scholar 

  3. Freeman, R., Yin, H.: Self-organising maps for hierarchical tree view document clustering using contextual information. In: Yin, H., Allinson, N.M., Freeman, R., Keane, J.A., Hubbard, S. (eds.) IDEAL 2002. LNCS, vol. 2412, pp. 123–128. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  4. Freeman, R., Yin, H., Allinson, N.M.: Self-organising maps for tree view based hierarchical document clustering. In: Proc. IJCNN 2002, Honolulu, Hawaii, vol. 2, pp. 1906–1911. IEEE, Los Alamitos (2002)

    Google Scholar 

  5. Freeman, R.T., Yin, H.: Tree view self-organisation of web content. Neurocomputing (2004) (in press)

    Google Scholar 

  6. Hearst, M.A.: Untangling text data mining. In: Proc. ACL 1999 (1999)

    Google Scholar 

  7. Hodge, V.J., Austin, J.: Hierarchical growing cell structures: Treegcs. IEEE Trans. Knowledge & Data Engineering 13(2), 207–218 (2001)

    Article  Google Scholar 

  8. Kohonen, T., Kaski, S., Lagus, K., Salojarvi, J., Honkela, J., Paatero, V., Saarela, A.: Self organization of a massive document collection. IEEE Trans. Neural Networks 11(3), 574–585 (2000)

    Article  Google Scholar 

  9. Morris, S.A., Asnake, B., Yen, G.G.: Dendrogram seriation using simulated annealing. Information Visualization 2(2), 95–104 (2003)

    Article  Google Scholar 

  10. Rauber, A., Merkl, D., Dittenbach, M.: The growing hierarchical self-organizing map: exploratory analysis of high-dimensional data. IEEE Trans. Neural Networks 13(6), 1331–1341 (2002)

    Article  Google Scholar 

  11. Salton, G.: Automatic text processing - the transformation, analysis, and retrieval of information by computer. Addison-Wesley, Reading (1989)

    Google Scholar 

  12. Schwarz, G.: Estimating the dimension of a model. The Annals of Statistics 6(2), 461–464 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  13. Sebastiani, F.: Machine learning in automated text categorization. ACM Computing Surveys 34(1), 1–47 (2002)

    Article  Google Scholar 

  14. Steinbach, M., Karypis, G., Kumar, V.: A comparison of document clustering techniques. In: Proc. KDD 2000, Boston, USA (2000)

    Google Scholar 

  15. Van Rijsbergen, C.J.: Information Retrieval, 2nd edn. Butterworth, Butterworths (1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Freeman, R.T., Yin, H. (2004). Topological Tree for Web Organisation, Discovery and Exploration. In: Yang, Z.R., Yin, H., Everson, R.M. (eds) Intelligent Data Engineering and Automated Learning – IDEAL 2004. IDEAL 2004. Lecture Notes in Computer Science, vol 3177. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28651-6_70

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-28651-6_70

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22881-3

  • Online ISBN: 978-3-540-28651-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics