Abstract
Concentration inequalities deal with deviations of functions of independent random variables from their expectation. In the last decade new tools have been introduced making it possible to establish simple and powerful inequalities. These inequalities are at the heart of the mathematical analysis of various problems in machine learning and made it possible to derive new efficient algorithms. This text attempts to summarize some of the basic tools.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Milman, V., Schechman, G.: Asymptotic theory of finite-dimensional normed spaces. Springer, New York (1986)
McDiarmid, C.: On the method of bounded differences. In: Surveys in Combinatorics 1989, pp. 148–188. Cambridge University Press, Cambridge (1989)
McDiarmid, C.: Concentration. In: Habib, M., McDiarmid, C., Ramirez-Alfonsin, J., Reed, B. (eds.) Probabilistic Methods for Algorithmic Discrete Mathematics, pp. 195–248. Springer, New York (1998)
Ahlswede, R., Gács, P., Körner, J.: Bounds on conditional probabilities with applications in multi-user communication. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 34, 157–177 (1976) (correction in 39, 353–354,1977)
Marton, K.: A simple proof of the blowing-up lemma. IEEE Transactions on Information Theory 32, 445–446 (1986)
Marton, K.: Bounding \(\bar{d}\)-distance by informational divergence: a way to prove measure concentration. Annals of Probability 24, 857–866 (1996)
Marton, K.: A measure concentration inequality for contracting Markov chains. Geometric and Functional Analysis 6, 556–571 (1996) (Erratum: 7:609–613, 1997)
Dembo, A.: Information inequalities and concentration of measure. Annals of Probability 25, 927–939 (1997)
Massart, P.: Optimal constants for Hoeffding type inequalities. Technical report, Mathematiques, Université de Paris-Sud, Report 98.86 (1998)
Rio, E.: Inégalités de concentration pour les processus empiriques de classes de parties. Probability Theory and Related Fields 119, 163–175 (2001)
Talagrand, M.: Concentration of measure and isoperimetric inequalities in product spaces. Publications Mathématiques de l’I.H.E.S. 81, 73–205 (1995)
Talagrand, M.: New concentration inequalities in product spaces. Inventiones Mathematicae 126, 505–563 (1996)
Talagrand, M.: A new look at independence. Annals of Probability 24, 1–34 (1996) (Special Invited Paper)
Luczak, M.J., McDiarmid, C.: Concentration for locally acting permutations. In: Discrete Mathematics (to appear, 2003)
McDiarmid, C.: Concentration for independent permutations. Combinatorics, Probability, and Computing 2, 163–178 (2002)
Panchenko, D.: A note on Talagrand’s concentration inequality. Electronic Communications in Probability 6 (2001)
Panchenko, D.: Some extensions of an inequality of Vapnik and Chervonenkis. Electronic Communications in Probability 7 (2002)
Panchenko, D.: Symmetrization approach to concentration inequalities for empirical processes. Annals of Probability (to appear, 2003)
de la Peña, V., Giné, E.: Decoupling: from Dependence to Independence. Springer, New York (1999)
Ledoux, M.: On Talagrand’s deviation inequalities for product measures. ESAIM: Probability and Statistics 1, 63–87 (1997), http://www.emath.fr/ps/
Ledoux, M.: Isoperimetry and Gaussian analysis. In: Bernard, P. (ed.) Lectures on Probability Theory and Statistics, Ecole d’Eté de Probabilités de St-Flour XXIV-1994, pp. 165–294 (1996)
Bobkov, S., Ledoux, M.: Poincaré’s inequalities and Talagrands’s concentration phenomenon for the exponential distribution. Probability Theory and Related Fields 107, 383–400 (1997)
Massart, P.: About the constants in Talagrand’s concentration inequalities for empirical processes. Annals of Probability 28, 863–884 (2000)
Klein, T.: Une inégalité de concentration à gauche pour les processus empiriques. C. R. Math. Acad. Sci. Paris 334, 501–504 (2002)
Boucheron, S., Lugosi, G., Massart, P.: A sharp concentration inequality with applications. Random Structures and Algorithms 16, 277–292 (2000)
Boucheron, S., Lugosi, G., Massart, P.: Concentration inequalities using the entropy method. The Annals of Probability 31, 1583–1614 (2003)
Bousquet, O.: A Bennett concentration inequality and its application to suprema of empirical processes. C. R. Acad. Sci. Paris 334, 495–500 (2002)
Bousquet, O.: Concentration inequalities for sub-additive functions using the entropy method. In: Giné, E., Houdré., C., Nualart, D. (eds.) Stochastic Inequalities and Applications, Birkhauser. Progress in Probability, vol. 56, pp. 213–247 (2003)
Boucheron, S., Bousquet, O., Lugosi, G., Massart, P.: Moment inequalities for functions of independent random variables. The Annals of Probability (to appear, 2004)
Janson, S., Luczak, T., Ruciński, A.: Random graphs. John Wiley, New York (2000)
Hoeffding, W.: Probability inequalities for sums of bounded random variables. Journal of the American Statistical Association 58, 13–30 (1963)
Chernoff, H.: A measure of asymptotic efficiency of tests of a hypothesis based on the sum of observations. Annals of Mathematical Statistics 23, 493–507 (1952)
Okamoto, M.: Some inequalities relating to the partial sum of binomial probabilities. Annals of the Institute of Statistical Mathematics 10, 29–35 (1958)
Bennett, G.: Probability inequalities for the sum of independent random variables. Journal of the American Statistical Association 57, 33–45 (1962)
Bernstein, S.: The Theory of Probabilities. Gastehizdat Publishing House, Moscow (1946)
Efron, B., Stein, C.: The jackknife estimate of variance. Annals of Statistics 9, 586–596 (1981)
Steele, J.: An Efron-Stein inequality for nonsymmetric statistics. Annals of Statistics 14, 753–758 (1986)
Vapnik, V., Chervonenkis, A.: On the uniform convergence of relative frequencies of events to their probabilities. Theory of Probability and its Applications 16, 264–280 (1971)
Devroye, L., Györfi, L., Lugosi, G.: A Probabilistic Theory of Pattern Recognition. Springer, New York (1996)
Vapnik, V.: Statistical Learning Theory. John Wiley, New York (1998)
van der Waart, A., Wellner, J.: Weak convergence and empirical processes. Springer, New York (1996)
Dudley, R.: Uniform Central Limit Theorems. Cambridge University Press, Cambridge (1999)
Koltchinskii, V., Panchenko, D.: Empirical margin distributions and bounding the generalization error of combined classifiers. Annals of Statistics 30 (2002)
Massart, P.: Some applications of concentration inequalities to statistics. Annales de la Faculté des Sciencies de Toulouse IX, 245–303 (2000)
Bartlett, P., Boucheron, S., Lugosi, G.: Model selection and error estimation. Machine Learning 48, 85–113 (2001)
Lugosi, G., Wegkamp, M.: Complexity regularization via localized random penalties (submitted, 2003)
Bousquet, O.: New approaches to statistical learning theory. Annals of the Institute of Statistical Mathematics 55, 371–389 (2003)
Lugosi, G.: Pattern classification and learning theory. In: Györfi, L. (ed.) Principles of Nonparametric Learning, pp. 5–62. Springer, Viena (2002)
Devroye, L., Györfi, L.: Nonparametric Density Estimation: The L1 View. John Wiley, New York (1985)
Devroye, L.: The kernel estimate is relatively stable. Probability Theory and Related Fields 77, 521–536 (1988)
Devroye, L.: Exponential inequalities in nonparametric estimation. In: Roussas, G. (ed.) Nonparametric Functional Estimation and Related Topics. NATO ASI Series, pp. 31–44. Kluwer Academic Publishers, Dordrecht (1991)
Devroye, L., Lugosi, G.: Combinatorial Methods in Density Estimation. Springer, New York (2000)
Koltchinskii, V.: Rademacher penalties and structural risk minimization. IEEE Transactions on Information Theory 47, 1902–1914 (2001)
Bartlett, P., Mendelson, S.: Rademacher and Gaussian complexities: risk bounds and structural results. Journal of Machine Learning Research 3, 463–482 (2002)
Bartlett, P.L., Bousquet, O., Mendelson, S.: Localized rademacher complexities. In: Kivinen, J., Sloan, R.H. (eds.) COLT 2002. LNCS, vol. 2375, pp. 44–48. Springer, Heidelberg (2002)
Vapnik, V., Chervonenkis, A.: Theory of Pattern Recognition. In: Nauka, Moscow (1974) (in Russian); German translation: Theorie der Zeichenerkennung. Akademie Verlag, Berlin (1979)
Blumer, A., Ehrenfeucht, A., Haussler, D., Warmuth, M.: Learnability and the Vapnik-Chervonenkis dimension. Journal of the ACM 36, 929–965 (1989)
Anthony, M., Bartlett, P.L.: Neural Network Learning: Theoretical Foundations. Cambridge University Press, Cambridge (1999)
Rhee, W., Talagrand, M.: Martingales, inequalities, and NP-complete problems. Mathematics of Operations Research 12, 177–181 (1987)
Shamir, E., Spencer, J.: Sharp concentration of the chromatic number on random graphs g n,p . Combinatorica 7, 374–384 (1987)
Samson, P.M.: Concentration of measure inequalities for Markov chains and ø-mixing processes. Annals of Probability 28, 416–461 (2000)
Cover, T., Thomas, J.: Elements of Information Theory. John Wiley, New York (1991)
Han, T.: Nonnegative entropy measures of multivariate symmetric correlations. Information and Control 36 (1978)
Beckner, W.: A generalized Poincaré inequality for Gaussian measures. Proceedings of the American Mathematical Society 105, 397–400 (1989)
Latała, R., Oleszkiewicz, C.: Between lobolev and Poincaré. In: Geometric Aspects of Functional Analysis, Israel Seminar (GAFA), 1996-2000. Lecture Notes in Mathematics, vol. 1745, pp. 147–168. Springer, Heidelberg (2000)
Chafaï, D.: On ø-entropies and ø-Sobolev inequalities. Technical report, arXiv.math.PR/0211103 (2002)
Ledoux, M.: Concentration of measure and logarithmic sobolev inequalities. In: Séminaire de Probabilités XXXIII. Lecture Notes in Mathematics, vol. 1709, pp. 120–216. Springer, Heidelberg (1999)
Ledoux, M.: The concentration of measure phenomenon. American Mathematical Society, Providence, RI (2001)
Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Boucheron, S., Lugosi, G., Bousquet, O. (2004). Concentration Inequalities. In: Bousquet, O., von Luxburg, U., Rätsch, G. (eds) Advanced Lectures on Machine Learning. ML 2003. Lecture Notes in Computer Science(), vol 3176. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28650-9_9
Download citation
DOI: https://doi.org/10.1007/978-3-540-28650-9_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-23122-6
Online ISBN: 978-3-540-28650-9
eBook Packages: Springer Book Archive