iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-540-28650-9_9
Concentration Inequalities | SpringerLink
Skip to main content

Concentration Inequalities

  • Chapter
Advanced Lectures on Machine Learning (ML 2003)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3176))

Included in the following conference series:

Abstract

Concentration inequalities deal with deviations of functions of independent random variables from their expectation. In the last decade new tools have been introduced making it possible to establish simple and powerful inequalities. These inequalities are at the heart of the mathematical analysis of various problems in machine learning and made it possible to derive new efficient algorithms. This text attempts to summarize some of the basic tools.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Milman, V., Schechman, G.: Asymptotic theory of finite-dimensional normed spaces. Springer, New York (1986)

    Google Scholar 

  2. McDiarmid, C.: On the method of bounded differences. In: Surveys in Combinatorics 1989, pp. 148–188. Cambridge University Press, Cambridge (1989)

    Chapter  Google Scholar 

  3. McDiarmid, C.: Concentration. In: Habib, M., McDiarmid, C., Ramirez-Alfonsin, J., Reed, B. (eds.) Probabilistic Methods for Algorithmic Discrete Mathematics, pp. 195–248. Springer, New York (1998)

    Chapter  Google Scholar 

  4. Ahlswede, R., Gács, P., Körner, J.: Bounds on conditional probabilities with applications in multi-user communication. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 34, 157–177 (1976) (correction in 39, 353–354,1977)

    Article  MathSciNet  MATH  Google Scholar 

  5. Marton, K.: A simple proof of the blowing-up lemma. IEEE Transactions on Information Theory 32, 445–446 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  6. Marton, K.: Bounding \(\bar{d}\)-distance by informational divergence: a way to prove measure concentration. Annals of Probability 24, 857–866 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  7. Marton, K.: A measure concentration inequality for contracting Markov chains. Geometric and Functional Analysis 6, 556–571 (1996) (Erratum: 7:609–613, 1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dembo, A.: Information inequalities and concentration of measure. Annals of Probability 25, 927–939 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Massart, P.: Optimal constants for Hoeffding type inequalities. Technical report, Mathematiques, Université de Paris-Sud, Report 98.86 (1998)

    Google Scholar 

  10. Rio, E.: Inégalités de concentration pour les processus empiriques de classes de parties. Probability Theory and Related Fields 119, 163–175 (2001)

    Article  MathSciNet  Google Scholar 

  11. Talagrand, M.: Concentration of measure and isoperimetric inequalities in product spaces. Publications Mathématiques de l’I.H.E.S. 81, 73–205 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  12. Talagrand, M.: New concentration inequalities in product spaces. Inventiones Mathematicae 126, 505–563 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Talagrand, M.: A new look at independence. Annals of Probability 24, 1–34 (1996) (Special Invited Paper)

    Article  MathSciNet  MATH  Google Scholar 

  14. Luczak, M.J., McDiarmid, C.: Concentration for locally acting permutations. In: Discrete Mathematics (to appear, 2003)

    Google Scholar 

  15. McDiarmid, C.: Concentration for independent permutations. Combinatorics, Probability, and Computing 2, 163–178 (2002)

    MathSciNet  MATH  Google Scholar 

  16. Panchenko, D.: A note on Talagrand’s concentration inequality. Electronic Communications in Probability 6 (2001)

    Google Scholar 

  17. Panchenko, D.: Some extensions of an inequality of Vapnik and Chervonenkis. Electronic Communications in Probability 7 (2002)

    Google Scholar 

  18. Panchenko, D.: Symmetrization approach to concentration inequalities for empirical processes. Annals of Probability (to appear, 2003)

    Google Scholar 

  19. de la Peña, V., Giné, E.: Decoupling: from Dependence to Independence. Springer, New York (1999)

    Book  Google Scholar 

  20. Ledoux, M.: On Talagrand’s deviation inequalities for product measures. ESAIM: Probability and Statistics 1, 63–87 (1997), http://www.emath.fr/ps/

    Article  MathSciNet  MATH  Google Scholar 

  21. Ledoux, M.: Isoperimetry and Gaussian analysis. In: Bernard, P. (ed.) Lectures on Probability Theory and Statistics, Ecole d’Eté de Probabilités de St-Flour XXIV-1994, pp. 165–294 (1996)

    Google Scholar 

  22. Bobkov, S., Ledoux, M.: Poincaré’s inequalities and Talagrands’s concentration phenomenon for the exponential distribution. Probability Theory and Related Fields 107, 383–400 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  23. Massart, P.: About the constants in Talagrand’s concentration inequalities for empirical processes. Annals of Probability 28, 863–884 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  24. Klein, T.: Une inégalité de concentration à gauche pour les processus empiriques. C. R. Math. Acad. Sci. Paris 334, 501–504 (2002)

    Article  MathSciNet  Google Scholar 

  25. Boucheron, S., Lugosi, G., Massart, P.: A sharp concentration inequality with applications. Random Structures and Algorithms 16, 277–292 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Boucheron, S., Lugosi, G., Massart, P.: Concentration inequalities using the entropy method. The Annals of Probability 31, 1583–1614 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  27. Bousquet, O.: A Bennett concentration inequality and its application to suprema of empirical processes. C. R. Acad. Sci. Paris 334, 495–500 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  28. Bousquet, O.: Concentration inequalities for sub-additive functions using the entropy method. In: Giné, E., Houdré., C., Nualart, D. (eds.) Stochastic Inequalities and Applications, Birkhauser. Progress in Probability, vol. 56, pp. 213–247 (2003)

    Google Scholar 

  29. Boucheron, S., Bousquet, O., Lugosi, G., Massart, P.: Moment inequalities for functions of independent random variables. The Annals of Probability (to appear, 2004)

    Google Scholar 

  30. Janson, S., Luczak, T., Ruciński, A.: Random graphs. John Wiley, New York (2000)

    Book  MATH  Google Scholar 

  31. Hoeffding, W.: Probability inequalities for sums of bounded random variables. Journal of the American Statistical Association 58, 13–30 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  32. Chernoff, H.: A measure of asymptotic efficiency of tests of a hypothesis based on the sum of observations. Annals of Mathematical Statistics 23, 493–507 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  33. Okamoto, M.: Some inequalities relating to the partial sum of binomial probabilities. Annals of the Institute of Statistical Mathematics 10, 29–35 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  34. Bennett, G.: Probability inequalities for the sum of independent random variables. Journal of the American Statistical Association 57, 33–45 (1962)

    Article  MATH  Google Scholar 

  35. Bernstein, S.: The Theory of Probabilities. Gastehizdat Publishing House, Moscow (1946)

    Google Scholar 

  36. Efron, B., Stein, C.: The jackknife estimate of variance. Annals of Statistics 9, 586–596 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  37. Steele, J.: An Efron-Stein inequality for nonsymmetric statistics. Annals of Statistics 14, 753–758 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  38. Vapnik, V., Chervonenkis, A.: On the uniform convergence of relative frequencies of events to their probabilities. Theory of Probability and its Applications 16, 264–280 (1971)

    Article  MATH  Google Scholar 

  39. Devroye, L., Györfi, L., Lugosi, G.: A Probabilistic Theory of Pattern Recognition. Springer, New York (1996)

    Book  MATH  Google Scholar 

  40. Vapnik, V.: Statistical Learning Theory. John Wiley, New York (1998)

    MATH  Google Scholar 

  41. van der Waart, A., Wellner, J.: Weak convergence and empirical processes. Springer, New York (1996)

    Google Scholar 

  42. Dudley, R.: Uniform Central Limit Theorems. Cambridge University Press, Cambridge (1999)

    Book  MATH  Google Scholar 

  43. Koltchinskii, V., Panchenko, D.: Empirical margin distributions and bounding the generalization error of combined classifiers. Annals of Statistics 30 (2002)

    Google Scholar 

  44. Massart, P.: Some applications of concentration inequalities to statistics. Annales de la Faculté des Sciencies de Toulouse IX, 245–303 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  45. Bartlett, P., Boucheron, S., Lugosi, G.: Model selection and error estimation. Machine Learning 48, 85–113 (2001)

    Article  MATH  Google Scholar 

  46. Lugosi, G., Wegkamp, M.: Complexity regularization via localized random penalties (submitted, 2003)

    Google Scholar 

  47. Bousquet, O.: New approaches to statistical learning theory. Annals of the Institute of Statistical Mathematics 55, 371–389 (2003)

    MathSciNet  MATH  Google Scholar 

  48. Lugosi, G.: Pattern classification and learning theory. In: Györfi, L. (ed.) Principles of Nonparametric Learning, pp. 5–62. Springer, Viena (2002)

    Google Scholar 

  49. Devroye, L., Györfi, L.: Nonparametric Density Estimation: The L1 View. John Wiley, New York (1985)

    MATH  Google Scholar 

  50. Devroye, L.: The kernel estimate is relatively stable. Probability Theory and Related Fields 77, 521–536 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  51. Devroye, L.: Exponential inequalities in nonparametric estimation. In: Roussas, G. (ed.) Nonparametric Functional Estimation and Related Topics. NATO ASI Series, pp. 31–44. Kluwer Academic Publishers, Dordrecht (1991)

    Chapter  Google Scholar 

  52. Devroye, L., Lugosi, G.: Combinatorial Methods in Density Estimation. Springer, New York (2000)

    MATH  Google Scholar 

  53. Koltchinskii, V.: Rademacher penalties and structural risk minimization. IEEE Transactions on Information Theory 47, 1902–1914 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  54. Bartlett, P., Mendelson, S.: Rademacher and Gaussian complexities: risk bounds and structural results. Journal of Machine Learning Research 3, 463–482 (2002)

    MathSciNet  MATH  Google Scholar 

  55. Bartlett, P.L., Bousquet, O., Mendelson, S.: Localized rademacher complexities. In: Kivinen, J., Sloan, R.H. (eds.) COLT 2002. LNCS, vol. 2375, pp. 44–48. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  56. Vapnik, V., Chervonenkis, A.: Theory of Pattern Recognition. In: Nauka, Moscow (1974) (in Russian); German translation: Theorie der Zeichenerkennung. Akademie Verlag, Berlin (1979)

    Google Scholar 

  57. Blumer, A., Ehrenfeucht, A., Haussler, D., Warmuth, M.: Learnability and the Vapnik-Chervonenkis dimension. Journal of the ACM 36, 929–965 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  58. Anthony, M., Bartlett, P.L.: Neural Network Learning: Theoretical Foundations. Cambridge University Press, Cambridge (1999)

    Book  MATH  Google Scholar 

  59. Rhee, W., Talagrand, M.: Martingales, inequalities, and NP-complete problems. Mathematics of Operations Research 12, 177–181 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  60. Shamir, E., Spencer, J.: Sharp concentration of the chromatic number on random graphs g n,p . Combinatorica 7, 374–384 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  61. Samson, P.M.: Concentration of measure inequalities for Markov chains and ø-mixing processes. Annals of Probability 28, 416–461 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  62. Cover, T., Thomas, J.: Elements of Information Theory. John Wiley, New York (1991)

    Book  MATH  Google Scholar 

  63. Han, T.: Nonnegative entropy measures of multivariate symmetric correlations. Information and Control 36 (1978)

    Google Scholar 

  64. Beckner, W.: A generalized Poincaré inequality for Gaussian measures. Proceedings of the American Mathematical Society 105, 397–400 (1989)

    MathSciNet  MATH  Google Scholar 

  65. Latała, R., Oleszkiewicz, C.: Between lobolev and Poincaré. In: Geometric Aspects of Functional Analysis, Israel Seminar (GAFA), 1996-2000. Lecture Notes in Mathematics, vol. 1745, pp. 147–168. Springer, Heidelberg (2000)

    Google Scholar 

  66. Chafaï, D.: On ø-entropies and ø-Sobolev inequalities. Technical report, arXiv.math.PR/0211103 (2002)

    Google Scholar 

  67. Ledoux, M.: Concentration of measure and logarithmic sobolev inequalities. In: Séminaire de Probabilités XXXIII. Lecture Notes in Mathematics, vol. 1709, pp. 120–216. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  68. Ledoux, M.: The concentration of measure phenomenon. American Mathematical Society, Providence, RI (2001)

    Google Scholar 

  69. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Boucheron, S., Lugosi, G., Bousquet, O. (2004). Concentration Inequalities. In: Bousquet, O., von Luxburg, U., Rätsch, G. (eds) Advanced Lectures on Machine Learning. ML 2003. Lecture Notes in Computer Science(), vol 3176. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28650-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-28650-9_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23122-6

  • Online ISBN: 978-3-540-28650-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics