iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-540-27816-0_15
A Multi-scale Geometric Flow for Segmenting Vasculature in MRI | SpringerLink
Skip to main content

A Multi-scale Geometric Flow for Segmenting Vasculature in MRI

  • Conference paper
Computer Vision and Mathematical Methods in Medical and Biomedical Image Analysis (MMBIA 2004, CVAMIA 2004)

Abstract

Often in neurosurgical planning a dual echo acquisition is performed that yields proton density (PD) and T2-weighted images to evaluate edema near a tumour or lesion. The development of vessel segmentation algorithms for PD images is of general interest since this type of acquisition is widespread and is entirely noninvasive. Whereas vessels are signaled by black blood contrast in such images, extracting them is a challenge because other anatomical structures also yield similar contrasts at their boundaries. In this paper we present a novel multi-scale geometric flow for segmenting vasculature from PD images which can also be applied to the easier cases of computed tomography (CT) angiography data or Gadolinium enhanced MRI. The key idea is to first apply Frangi’s vesselness measure [4] to find putative centerlines of tubular structures along with their estimated radii. This multi-scale measure is then distributed to create a vector field which is orthogonal to vessel boundaries so that the flux maximizing flow algorithm of [17] can be applied to recover them. We validate the approach qualitatively with PD, angiography and Gadolinium enhanced MRI volumes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alvarez, L., Guichard, F., Lions, P.L., Morel, J.M.: Axiomes et équations fondamentales du traitement d’images. C. R. Acad. Sci. Paris 315, 135–138 (1992)

    MATH  MathSciNet  Google Scholar 

  2. Ambrosio, L., Soner, H.M.: Level set approach to mean curvature flow in arbitrary codimension. Journal of Differential Geometry 43, 693–737 (1996)

    MATH  MathSciNet  Google Scholar 

  3. Aylward, S.R., Bullitt, E.: Initialization, noise, singularities, and scale in height ridge traversal for tubular object centerline extraction. IEEE Transactions On Medical Imaging 21(2), 61–75 (2002)

    Article  Google Scholar 

  4. Frangi, W.N., Vincken, K.L., Viergever, M.A.: Multiscale vessel enhancement filtering. In: MICCAI 1998, pp. 130–137 (1998)

    Google Scholar 

  5. Gage, M., Hamilton, R.: The heat equation shrinking convex plane curves. Journal of Differential Geometry 23, 69–96 (1986)

    MATH  MathSciNet  Google Scholar 

  6. Grayson, M.: The heat equation shrinks embedded plane curves to round points. Journal of Differential Geometry 26, 285–314 (1987)

    MATH  MathSciNet  Google Scholar 

  7. Kimia, B.B., Tannenbaum, A., Zucker, S.W.: Shape, shocks, and deformations I: The components of two-dimensional shape and the reaction-diffusion space. International Journal of Computer Vision 15, 189–224 (1995)

    Article  Google Scholar 

  8. Koller, T.M., Gerig, G., Székely, G., Dettwiler, D.: Multiscale detection of curvilinear structures in 2-d and 3-d image data. In: International Conference On Computer Vision, pp. 864–869 (1995)

    Google Scholar 

  9. Krissian, K., Malandain, G., Ayache, N.: Model-based detection of tubular structures in 3d images. Computer Vision and Image Understanding 80(2), 130–171 (2000)

    Article  MATH  Google Scholar 

  10. Lindeberg, T.: Edge detection and ridge detection with automatic scale selection. International Journal of Computer Vision 30(2), 77–116 (1998)

    Google Scholar 

  11. Lorenz, C., Carlsen, I., Buzug, T., Fassnacht, C., Weese, J.: Multi-scale line segmentation with automatic estimation of width, contrast and tangential direction in 2d and 3d medical images. In: CVRMED-MRCAS 1997. LNCS, vol. 1205, pp. 233–242 (1997)

    Google Scholar 

  12. Lorigo, L.M., Faugeras, O.D., Grimson, E.L., Keriven, R., Kikinis, R., Nabavi, A., Westin, C.-F.: Curves: Curve evolution for vessel segmentation. Medical Image Analysis 5, 195–206 (2001)

    Article  Google Scholar 

  13. McInerney, T., Terzopoulos, D.: T-snakes: Topology adaptive snakes. Medical Image Analysis 4, 73–91 (2000)

    Article  Google Scholar 

  14. Osher, S.J., Sethian, J.A.: Fronts propagating with curvature dependent speed: Algorithms based on hamilton-jacobi formulations. Journal of Computational Physics 79, 12–49 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  15. Ostergaard, L., Larsen, O., Goualher, G., Evans, A., Collins, D.: Extraction of cerebral vasculature from mri. In: 9th Danish Conference on Pattern Recognition and Image Analysis (August 2000)

    Google Scholar 

  16. Sato, Y., Nakajima, S., Shiraga, N., Atsumi, H., Yoshida, S., Koller, T., Gerig, G., Kikinis, R.: 3d multi-scale line filter for segmentation and visualization of curvilinear structures in medical images. Medical Image Analysis 2(2), 143–168 (1998)

    Article  Google Scholar 

  17. Vasilevskyi, A., Siddiqi, K.: Flux maximizing geometric flows. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(12), 1–14 (2002)

    Google Scholar 

  18. Wilson, D.L., Noble, A.: Segmentation of cerebral vessels and aneurysms from mr aniography data. Information Processing in Medical Imaging, 423–428 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Descoteaux, M., Collins, L., Siddiqi, K. (2004). A Multi-scale Geometric Flow for Segmenting Vasculature in MRI. In: Sonka, M., Kakadiaris, I.A., Kybic, J. (eds) Computer Vision and Mathematical Methods in Medical and Biomedical Image Analysis. MMBIA CVAMIA 2004 2004. Lecture Notes in Computer Science, vol 3117. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27816-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-27816-0_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22675-8

  • Online ISBN: 978-3-540-27816-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics