Abstract
This paper focuses on the use and interpretation of approximate databases where both rough sets and indiscernibility partitions are generalized and replaced by approximate relations and similarity spaces. Similarity spaces are used to define neighborhoods around individuals and these in turn are used to define approximate sets and relations. There is a wide spectrum of choice as to what properties the similarity relation should have and how this affects the properties of approximate relations in the database. In order to make this interaction precise, we propose a technique which permits specification of both approximation and similarity constraints on approximate databases and automatic translation between them. This technique provides great insight into the relation between similarity and approximation and is similar to that used in modal correspondence theory. In order to automate the translations, quantifier elimination techniques are used.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ackermann, W.: Untersuchungen über das eliminationsproblem der mathematischen logik. Mathematische Annalen 110, 390–413 (1935)
Bull, R.A., Segerberg, K.: Basic modal logic. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosophical Logic, vol. 2, pp. 1–88. D. Reidel Pub. Co., 20198402
Chellas, B.F.: Modal Logic - an Introduction. Cambridge University Press, Cambridge (1980)
Doherty, P., Kachniarz, J., Szałas, A.: Using contextually closed queries for local closed-world reasoning in rough knowledge databases. In: [13] (2003)
Doherty, P., Łukaszewicz, W., Skowron, A., Szałas, A.: Approximation transducers and trees: A technique for combining rough and crisp knowledge. In: Pal, S.K., Polkowski, L., Skowron, A. (eds.) Rough-Neuro Computing: Techniques for Computing with Words, Springer, Heidelberg (2003)
Doherty, P., Łukaszewicz, W., Szałas, A.: Computing circumscription revisited. Journal of Automated Reasoning 18(3), 297–336 (1997)
Doherty, P., Łukaszewicz, W., Szałas, A.: Information granules for intelligent knowledge structures. In: Proc. 9th International Conference on rough sets, fuzzy sets, data mining and granular computing. LNCS, Springer, Heidelberg (2003)
Doherty, P., Łukaszewicz, W., Szałas, A.: Tolerance spaces and approximative representational structures. In: Proceedings of 26th German Conference on Artificial Intelligence, Springer, Heidelberg (2003)
Hughes, G.E., Cresswell, M.J.: An Introduction to Modal Logic. Methuen and Co. Ltd., London (1968)
Kachniarz, J., Szałas, A.: On a static approach to verification of integrity constraints in relational databases. In: Orłowska, E., Szałas, A. (eds.) Relational Methods for Computer Science Applications, pp. 97–109. Springer Physica- Verlag (2001)
Liau, C.-J.: An overview of rough set semantics for modal and quantifier logics. Int. Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 8(1), 93–118 (2000)
Nonnengart, A., Ohlbach, H.J., Szałas, A.: Elimination of predicate quantifiers. In: Ohlbach, H.J., Reyle, U. (eds.) Logic, Language and Reasoning. Essays in Honor of Dov Gabbay, Part I, pp. 159–181. Kluwer, Dordrecht (1999)
Pal, S.K., Polkowski, L., Skowron, A. (eds.): Rough-Neuro Computing: Techniques for Computing with Words. Springer, Heidelberg (2003)
Pawlak, Z.: Rough Sets. Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dordrecht (1991)
Skowron, A., Stepaniuk, J.: Tolerance approximation spaces. Fundamenta Informaticae 27, 245–253 (1996)
Słowiński, R., Vanderpooten, D.: Similarity relation as a basis for rough approximations. In: Wang, P. (ed.) Advances in Machine Intelligence & Soft Computing, Raleigh NC, pp. 17–33 (1997) (Bookwrights)
Słowiński, R., Vanderpooten, D.: A generalized definition of rough approximations based on similarity. IEEE Trans. on Data and Knowledge Engineering 12(2), 331–336 (2000)
Szałas, A.: On the correspondence between modal and classical logic: An automated approach. Journal of Logic and Computation 3, 605–620 (1993)
Van Benthem, J.: Correspondence theory. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosophical Logic, vol. 2, pp. 167–247. D. Reidel Pub. Co., Dordrechtz (1984)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Doherty, P., Szałas, A. (2004). On the Correspondence between Approximations and Similarity. In: Tsumoto, S., Słowiński, R., Komorowski, J., Grzymała-Busse, J.W. (eds) Rough Sets and Current Trends in Computing. RSCTC 2004. Lecture Notes in Computer Science(), vol 3066. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-25929-9_16
Download citation
DOI: https://doi.org/10.1007/978-3-540-25929-9_16
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-22117-3
Online ISBN: 978-3-540-25929-9
eBook Packages: Springer Book Archive