iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-540-25929-9_16
On the Correspondence between Approximations and Similarity | SpringerLink
Skip to main content

On the Correspondence between Approximations and Similarity

  • Conference paper
Rough Sets and Current Trends in Computing (RSCTC 2004)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3066))

Included in the following conference series:

Abstract

This paper focuses on the use and interpretation of approximate databases where both rough sets and indiscernibility partitions are generalized and replaced by approximate relations and similarity spaces. Similarity spaces are used to define neighborhoods around individuals and these in turn are used to define approximate sets and relations. There is a wide spectrum of choice as to what properties the similarity relation should have and how this affects the properties of approximate relations in the database. In order to make this interaction precise, we propose a technique which permits specification of both approximation and similarity constraints on approximate databases and automatic translation between them. This technique provides great insight into the relation between similarity and approximation and is similar to that used in modal correspondence theory. In order to automate the translations, quantifier elimination techniques are used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ackermann, W.: Untersuchungen über das eliminationsproblem der mathematischen logik. Mathematische Annalen 110, 390–413 (1935)

    Article  MathSciNet  Google Scholar 

  2. Bull, R.A., Segerberg, K.: Basic modal logic. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosophical Logic, vol. 2, pp. 1–88. D. Reidel Pub. Co., 20198402

    Google Scholar 

  3. Chellas, B.F.: Modal Logic - an Introduction. Cambridge University Press, Cambridge (1980)

    MATH  Google Scholar 

  4. Doherty, P., Kachniarz, J., Szałas, A.: Using contextually closed queries for local closed-world reasoning in rough knowledge databases. In: [13] (2003)

    Google Scholar 

  5. Doherty, P., Łukaszewicz, W., Skowron, A., Szałas, A.: Approximation transducers and trees: A technique for combining rough and crisp knowledge. In: Pal, S.K., Polkowski, L., Skowron, A. (eds.) Rough-Neuro Computing: Techniques for Computing with Words, Springer, Heidelberg (2003)

    Google Scholar 

  6. Doherty, P., Łukaszewicz, W., Szałas, A.: Computing circumscription revisited. Journal of Automated Reasoning 18(3), 297–336 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  7. Doherty, P., Łukaszewicz, W., Szałas, A.: Information granules for intelligent knowledge structures. In: Proc. 9th International Conference on rough sets, fuzzy sets, data mining and granular computing. LNCS, Springer, Heidelberg (2003)

    Google Scholar 

  8. Doherty, P., Łukaszewicz, W., Szałas, A.: Tolerance spaces and approximative representational structures. In: Proceedings of 26th German Conference on Artificial Intelligence, Springer, Heidelberg (2003)

    Google Scholar 

  9. Hughes, G.E., Cresswell, M.J.: An Introduction to Modal Logic. Methuen and Co. Ltd., London (1968)

    MATH  Google Scholar 

  10. Kachniarz, J., Szałas, A.: On a static approach to verification of integrity constraints in relational databases. In: Orłowska, E., Szałas, A. (eds.) Relational Methods for Computer Science Applications, pp. 97–109. Springer Physica- Verlag (2001)

    Google Scholar 

  11. Liau, C.-J.: An overview of rough set semantics for modal and quantifier logics. Int. Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 8(1), 93–118 (2000)

    MATH  MathSciNet  Google Scholar 

  12. Nonnengart, A., Ohlbach, H.J., Szałas, A.: Elimination of predicate quantifiers. In: Ohlbach, H.J., Reyle, U. (eds.) Logic, Language and Reasoning. Essays in Honor of Dov Gabbay, Part I, pp. 159–181. Kluwer, Dordrecht (1999)

    Google Scholar 

  13. Pal, S.K., Polkowski, L., Skowron, A. (eds.): Rough-Neuro Computing: Techniques for Computing with Words. Springer, Heidelberg (2003)

    Google Scholar 

  14. Pawlak, Z.: Rough Sets. Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dordrecht (1991)

    MATH  Google Scholar 

  15. Skowron, A., Stepaniuk, J.: Tolerance approximation spaces. Fundamenta Informaticae 27, 245–253 (1996)

    MATH  MathSciNet  Google Scholar 

  16. Słowiński, R., Vanderpooten, D.: Similarity relation as a basis for rough approximations. In: Wang, P. (ed.) Advances in Machine Intelligence & Soft Computing, Raleigh NC, pp. 17–33 (1997) (Bookwrights)

    Google Scholar 

  17. Słowiński, R., Vanderpooten, D.: A generalized definition of rough approximations based on similarity. IEEE Trans. on Data and Knowledge Engineering 12(2), 331–336 (2000)

    Article  Google Scholar 

  18. Szałas, A.: On the correspondence between modal and classical logic: An automated approach. Journal of Logic and Computation 3, 605–620 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  19. Van Benthem, J.: Correspondence theory. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosophical Logic, vol. 2, pp. 167–247. D. Reidel Pub. Co., Dordrechtz (1984)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Doherty, P., Szałas, A. (2004). On the Correspondence between Approximations and Similarity. In: Tsumoto, S., Słowiński, R., Komorowski, J., Grzymała-Busse, J.W. (eds) Rough Sets and Current Trends in Computing. RSCTC 2004. Lecture Notes in Computer Science(), vol 3066. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-25929-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-25929-9_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22117-3

  • Online ISBN: 978-3-540-25929-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics