iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-540-24749-4_55
Effective Strong Dimension in Algorithmic Information and Computational Complexity | SpringerLink
Skip to main content

Effective Strong Dimension in Algorithmic Information and Computational Complexity

  • Conference paper
STACS 2004 (STACS 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2996))

Included in the following conference series:

Abstract

The two most important notions of fractal dimension are Hausdorff dimension, developed by Hausdorff (1919), and packing dimension, developed independently by Tricot (1982) and Sullivan (1984). Both dimensions have the mathematical advantage of being defined from measures, and both have yielded extensive applications in fractal geometry and dynamical systems.

Lutz (2000) has recently proven a simple characterization of Hausdorff dimension in terms of gales, which are betting strategies that generalize martingales. Imposing various computability and complexity constraints on these gales produces a spectrum of effective versions of Hausdorff dimension, including constructive, computable, polynomial-space, polynomial-time, and finite-state dimensions. Work by several investigators has already used these effective dimensions to shed significant new light on a variety of topics in theoretical computer science.

In this paper we show that packing dimension can also be characterized in terms of gales. Moreover, even though the usual definition of packing dimension is considerably more complex than that of Hausdorff dimension, our gale characterization of packing dimension is an exact dual of – and every bit as simple as – the gale characterization of Hausdorff dimension.

Effectivizing our gale characterization of packing dimension produces a variety of effective strong dimensions, which are exact duals of the effective dimensions mentioned above. In general (and in analogy with the classical fractal dimensions), the effective strong dimension of a set or sequence is at least as great as its effective dimension, with equality for sets or sequences that are sufficiently regular.

We develop the basic properties of effective strong dimensions and prove a number of results relating them to fundamental aspects of randomness, Kolmogorov complexity, prediction, Boolean circuit-size complexity, polynomial-time degrees, and data compression. Aside from the above characterization of packing dimension, our two main theorems are the following.

  1. 1

    If β = (β 0,β 1,...) is a computable sequence of biases that are bounded away from 0 and R is random with respect to β, then the dimension and strong dimension of R are the lower and upper average entropies, respectively, of β.

  2. 2

    For each pair of Δ0 2-computable real numbers 0 ≤ α ≤ β ≤ 1, there exists A ∈ E such that the polynomial-time many-one degree of A has dimension α in E and strong dimension β in E.

Our proofs of these theorems use a new large deviation theorem for self-information with respect to a bias sequence β that need not be convergent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ambos-Spies, K., Merkle, W., Reimann, J., Stephan, F.: Hausdorff dimension in exponential time. In: Proceedings of the 16th IEEE Conference on Computational Complexity, pp. 210–217 (2001)

    Google Scholar 

  2. Cai, J., Hartmanis, J.: On Hausdorff and topological dimensions of the Kolmogorov complexity of the real line. Journal of Computer and Systems Sciences 49, 605–619 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  3. Dai, J.J., Lathrop, J.I., Lutz, J.H., Mayordomo, E.: Finite-state dimension. Theoretical Computer Science 310(1-3), 1–33 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. Falconer, K.: Fractal Geometry: Mathematical Foundations and Applications. John Wiley & Sons, Chichester (1990)

    MATH  Google Scholar 

  5. Falconer, K.: Techniques in Fractal Geometry. John Wiley & Sons, Chichester (1997)

    MATH  Google Scholar 

  6. Fenner, S.A.: Gales supergales are equivalent for defining constructive Hausdorff dimension. Technical Report cs.CC/0208044, Computing Research Repository (2002)

    Google Scholar 

  7. Fortnow, L., Lutz, J.H.: Prediction and dimension. Journal of Computer and System Sciences (to appear)

    Google Scholar 

  8. Hausdorff, F.: Dimension und äußeres Maß. Mathematische Annalen 79, 157–179 (1919)

    Article  MathSciNet  Google Scholar 

  9. Hitchcock, J.M.: Correspondence principles for effective dimensions. Theory of Computing Systems (to appear)

    Google Scholar 

  10. Hitchcock, J.M.: MAX3SAT is exponentially hard to approximate if NP has positive dimension. Theoretical Computer Science 289(1), 861–869 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hitchcock, J.M.: Fractal dimension and logarithmic loss unpredictability. Theoretical Computer Science 304(1-3), 431–441 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Hitchcock, J.M.: Gales suffice for constructive dimension. Information Processing Letters 86(1), 9–12 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  13. Lévy, P.: Théorie de l’Addition des Variables Aleatoires. Gauthier-Villars (1937) (second edition 1954)

    Google Scholar 

  14. Li, M., Vitányi, P.M.B.: An Introduction to Kolmogorov Complexity and its Applications, 2nd edn. Springer, Berlin (1997)

    MATH  Google Scholar 

  15. Lutz, J.H.: Almost everywhere high nonuniform complexity. Journal of Computer and System Sciences 44(2), 220–258 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  16. Lutz, J.H.: Resource-bounded measure. In: Proceedings of the 13th IEEE Conference on Computational Complexity, pp. 236–248 (1998)

    Google Scholar 

  17. Lutz, J.H.: Dimension in complexity classes. SIAM Journal on Computing 32(5), 1236–1250 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  18. Lutz, J.H.: The dimensions of individual strings and sequences. Information and Computation 187(1), 49–79 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  19. Mattila, P., Mauldin, R.: Measure and dimension functions: measurability and densities. Mathematical Proceedings of the Cambridge Philosophical Society 121, 81–100 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  20. Mayordomo, E.: Effective Hausdorff dimension. In: Proceedings of Foundations of the Formal Sciences III, Kluwer Academic Publishers, Dordrecht (to appear)

    Google Scholar 

  21. Mayordomo, E.: A Kolmogorov complexity characterization of constructive Hausdorff dimension. Information Processing Letters 84(1), 1–3 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  22. Ryabko, B.Y.: Coding of combinatorial sources and Hausdorff dimension. Soviet Mathematics Doklady 30, 219–222 (1984)

    MATH  Google Scholar 

  23. Ryabko, B.Y.: Noiseless coding of combinatorial sources. Problems of Information Transmission 22, 170–179 (1986)

    MATH  MathSciNet  Google Scholar 

  24. Ryabko, B.Y.: Algorithmic approach to the prediction problem. Problems of Information Transmission 29, 186–193 (1993)

    MathSciNet  Google Scholar 

  25. Ryabko, B.Y.: The complexity and effectiveness of prediction problems. Journal of Complexity 10, 281–295 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  26. Schnorr, C.P.: A unified approach to the definition of random sequences. Mathematical Systems Theory 5, 246–258 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  27. Schnorr, C.P.: Zufälligkeit und Wahrscheinlichkeit. Lecture Notes in Mathematics 218 (1971)

    Google Scholar 

  28. Schnorr, C.P.: Process complexity and effective random tests. Journal of Computer and System Sciences 7, 376–388 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  29. Shannon, C.E.: A mathematical theory of communication. Bell System Technical Journal 27, 379–423, 623–656 (1948)

    MATH  MathSciNet  Google Scholar 

  30. Staiger, L.: Kolmogorov complexity and Hausdorff dimension. Information and Computation 103, 159–194 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  31. Staiger, L.: A tight upper bound on Kolmogorov complexity and uniformly optimal prediction. Theory of Computing Systems 31, 215–229 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  32. Staiger, L.: How much can you win when your adversary is handicapped? In: Numbers, Information and Complexity, pp. 403–412. Kluwer, Dordrecht (2000)

    Google Scholar 

  33. Sullivan, D.: Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups. Acta Mathematica 153, 259–277 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  34. Tadaki, K.: A generalization of Chaitin’s halting probability ω and halting selfsimilar sets. Hokkaido Mathematical Journal 31, 219–253 (2002)

    MATH  MathSciNet  Google Scholar 

  35. Tricot, C.: Two definitions of fractional dimension. Mathematical Proceedings of the Cambridge Philosophical Society 91, 57–74 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  36. Ville, J.: Étude Critique de la Notion de Collectif. Gauthier–Villars, Paris (1939)

    Google Scholar 

  37. Ziv, J.: Coding theorems for individual sequences. IEEE Transactions on Information Theory 24, 405–412 (1978)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Athreya, K.B., Hitchcock, J.M., Lutz, J.H., Mayordomo, E. (2004). Effective Strong Dimension in Algorithmic Information and Computational Complexity. In: Diekert, V., Habib, M. (eds) STACS 2004. STACS 2004. Lecture Notes in Computer Science, vol 2996. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24749-4_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24749-4_55

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21236-2

  • Online ISBN: 978-3-540-24749-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics