iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-540-24630-5_57
Using T-Ret System to Improve Incident Report Retrieval | SpringerLink
Skip to main content

Using T-Ret System to Improve Incident Report Retrieval

  • Conference paper
Computational Linguistics and Intelligent Text Processing (CICLing 2004)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2945))

Abstract

This papers describes novel research involving the development of Textual CBR techniques and applying them to the problem of Incident Report Retrieval. Incident Report Retrieval is a relatively new research area in the domain of Accident Reporting and Analysis. We describe T-Ret, an Incident Report Retrieval system that incorporates textual CBR techniques and outline preliminary evaluation results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Brüninghaus, S., Ashley, K.D.: Using machine learning to assign indices to legal cases. In: Leake, D.B., Plaza, E. (eds.) ICCBR 1997. LNCS, vol. 1266, pp. 303–314. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  2. Daniels, J.J., Rissland, E.: What you saw is what you want: Using cases to seed information retrieval. In: Leake, D.B., Plaza, E. (eds.) ICCBR 1997. LNCS, vol. 1266. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  3. Lenz, M.: Defining knowledge layers for textual case-based reasoning. In: Cunningham, P., Smyth, B., Keane, M. (eds.) EWCBR 1998. LNCS (LNAI), vol. 1488, p. 298. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  4. Weber, R., Martins, A., Barcia, R.M.: On legal texts and cases. In: Lenz, M., Ashley, K. (eds.) Proceedings of the AAAI 1998 Workshop on Textual Case-Based Reasoning, pp. 40–50. AAAI Press, Menlo Park (1998)

    Google Scholar 

  5. Carthy, J.: InRet: An Intelligent Incident Management System. In: European Colloquium on Case-based Reasoning (ECCBR 2002), September 4-8 (2002)

    Google Scholar 

  6. Salton, G., McGill, M.J.: The SMART and SIRE Experimental Retrieval Systems. McGraw-Hill, New York (1983)

    Google Scholar 

  7. Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing. Communications of the ACM 18(11), 613–620 (1971)

    Article  Google Scholar 

  8. Johnson, C.: Using Case based Reasoning to Support the Indexing and Retrieval of Incident Reports. In: Proceedings of the 19th European Annual Conference Human Decision Making and Manual Control, pp. 127–134 (1999)

    Google Scholar 

  9. Reason, J.: Managing the Risks of Organisational Accidents. Ashgate, Aldershot (1998)

    Google Scholar 

  10. Wilson, D.C., Bradshaw, S.: CBR Textuality. In: Proceedings of the Fourth UK Case-Based Reasoning Workshop, pp. 67–80. AI-CBR, University of Salford (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Carthy, J., Wilson, D.C., Wang, R., Dunnion, J., Drummond, A. (2004). Using T-Ret System to Improve Incident Report Retrieval. In: Gelbukh, A. (eds) Computational Linguistics and Intelligent Text Processing. CICLing 2004. Lecture Notes in Computer Science, vol 2945. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24630-5_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-24630-5_57

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21006-1

  • Online ISBN: 978-3-540-24630-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics