Abstract
A numerical irreducible decomposition for a polynomial system provides representations for the irreducible factors of all positive dimensional solution sets of the system, separated from its isolated solutions. Homotopy continuation methods are applied to compute a numerical irreducible decomposition. Load balancing and pipelining are techniques in a parallel implementation on a computer with multicore processors. The application of the parallel algorithms is illustrated on solving the cyclic n-roots problems, in particular for \(n = 8, 9\), and 12.
This material is based upon work supported by the National Science Foundation under Grant No. 1440534.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Adrovic, D., Verschelde, J.: Polyhedral methods for space curves exploiting symmetry applied to the cyclic n-roots problem. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2013. LNCS, vol. 8136, pp. 10–29. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-02297-0_2
Backelin, J.: Square multiples n give infinitely many cyclic n-roots. Reports, Matematiska Institutionen 8, Stockholms universitet (1989)
Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Software for numerical algebraic geometry: a paradigm and progress towards its implementation. In: Stillman, M.E., Takayama, N., Verschelde, J. (eds.) Software for Algebraic Geometry. IMA Volumes in Mathematics and its Applications, vol. 148, pp. 33–46. Springer, New York (2008). https://doi.org/10.1007/978-0-387-78133-4_1
Björck, G., Fröberg, R.: Methods to “divide out” certain solutions from systems of algebraic equations, applied to find all cyclic 8-roots. In: Gyllenberg, M., Persson, L.E. (eds.) Analysis, Algebra and Computers in Mathematical Research. LNM, vol. 564, pp. 57–70. Dekker, London (1994)
Chen, T., Lee, T.-L., Li, T.-Y.: Hom4PS-3: a parallel numerical solver for systems of polynomial equations based on polyhedral homotopy continuation methods. In: Hong, H., Yap, C. (eds.) ICMS 2014. LNCS, vol. 8592, pp. 183–190. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44199-2_30
Chen, T., Lee, T.L., Li, T.Y.: Mixed volume computation in parallel. Taiwan. J. Math. 18(1), 93–114 (2014)
Faugère, J.C.: Finding all the solutions of Cyclic 9 using Gröbner basis techniques. In: Computer Mathematics - Proceedings of the Fifth Asian Symposium (ASCM 2001). Lecture Notes Series on Computing, vol. 9, pp. 1–12. World Scientific (2001)
Gao, T., Li, T.Y., Wu, M.: Algorithm 846: MixedVol: a software package for mixed-volume computation. ACM Trans. Math. Softw. 31(4), 555–560 (2005)
Hida, Y., Li, X.S., Bailey, D.H.: Algorithms for quad-double precision floating point arithmetic. In: 15th IEEE Symposium on Computer Arithmetic (Arith-15 2001), pp. 155–162. IEEE Computer Society (2001)
Leykin, A., Verschelde, J.: Decomposing solution sets of polynomial systems: a new parallel monodromy breakup algorithm. Int. J. Comput. Sci. Eng. 4(2), 94–101 (2009)
Leykin, A., Verschelde, J., Zhao, A.: Newton’s method with deflation for isolated singularities of polynomial systems. Theor. Comput. Sci. 359(1–3), 111–122 (2006)
Leykin, A., Verschelde, J., Zhao, A.: Evaluation of Jacobian matrices for Newton’s method with deflation to approximate isolated singular solutions of polynomial systems. In: Wang, D., Zhi, L. (eds.) Symbolic-Numeric Computation, Trends in Mathematics, pp. 269–278. Birkhauser (2007)
Malajovich, G.: Computing mixed volume and all mixed cells in quermassintegral time. Found. Comput. Math. 17, 1293–1334 (2016)
Mizutani, T., Takeda, A.: DEMiCs: a software package for computing the mixed volume via dynamic enumeration of all mixed cells. In: Stillman, M.E., Takayama, N., Verschelde, J. (eds.) Software for Algebraic Geometry. IMA Volumes in Mathematics and Its Applications, vol. 148, pp. 59–79. Springer, New York (2008). https://doi.org/10.1007/978-0-387-78133-4_5
Mizutani, T., Takeda, A., Kojima, M.: Dynamic enumeration of all mixed cells. Discret. Comput. Geom. 37(3), 351–367 (2007)
Sabeti, R.: Numerical-symbolic exact irreducible decomposition of cyclic-12. LMS J. Comput. Math. 14, 155–172 (2011)
Sandén, B.I.: Design of Multithreaded Software. The Entity-Life Modeling Approach. IEEE Computer Society (2011)
Sommese, A.J., Verschelde, J., Wampler, C.W.: Numerical irreducible decomposition using PHCpack. In: Joswig, M., Takayama, N. (eds.) Algebra, Geometry, and Software Systems, pp. 109–130. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-662-05148-1_6
Sommese, A.J., Verschelde, J., Wampler, C.W.: Introduction to numerical algebraic geometry. In: Dickenstein, A., Emiris, I.Z. (eds.) Solving Polynomial Equations. Foundations, Algorithms and Applications. Algorithms and Computation in Mathematics, vol. 14, pp. 301–337. Springer, Heidelberg (2005). https://doi.org/10.1007/3-540-27357-3_8
Verschelde, J.: Algorithm 795: PHCpack: a general-purpose solver for polynomial systems by homotopy continuation. ACM Trans. Math. Softw. 25(2):251–276 (1999). Software: http://www.phcpack.org
Verschelde, J., Yoffe, G.: Polynomial homotopies on multicore workstations. In: Maza, M.M., Roch, J.-L. (eds.) Proceedings of the 4th International Workshop on Parallel Symbolic Computation (PASCO 2010), pp. 131–140. ACM (2010)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Verschelde, J. (2018). A Blackbox Polynomial System Solver on Parallel Shared Memory Computers. In: Gerdt, V., Koepf, W., Seiler, W., Vorozhtsov, E. (eds) Computer Algebra in Scientific Computing. CASC 2018. Lecture Notes in Computer Science(), vol 11077. Springer, Cham. https://doi.org/10.1007/978-3-319-99639-4_25
Download citation
DOI: https://doi.org/10.1007/978-3-319-99639-4_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-99638-7
Online ISBN: 978-3-319-99639-4
eBook Packages: Computer ScienceComputer Science (R0)