Abstract
Causally consistent reversibility relates reversibility in a concurrent system with causality. Broadcast is a powerful primitive of communication used to model several distributed systems from local area networks, including wireless systems and lately multi-agent systems. In this paper, we study the interplay between reversibility and broadcast, in the setting of CCS endowed with a broadcast semantics. We first show how it is possible to reverse broadcast in CCS and then show that the obtained reversibility is causally consistent. We show the applicability of the proposed calculus by modelling the consensus algorithm.
Research partly supported by the EU COST Action IC1405.
This work sprang up from the MSCA-IF-2017 fellowship RCADE 794405.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Barker, B.: Message Passing Interface (MPI). In: Workshop: High Performance Computing on Stampede (2015)
Charles, P., et al.: X10: an object-oriented approach to non-uniform cluster computing. In: OOPSLA, pp. 519–538 (2005)
Danos, V., Krivine, J.: Reversible communicating systems. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 292–307. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28644-8_19
Ene, C., Muntean, T.: Expressiveness of point-to-point versus broadcast communications. In: Ciobanu, G., Păun, G. (eds.) FCT 1999. LNCS, vol. 1684, pp. 258–268. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48321-7_21
Giachino, E., Lanese, I., Mezzina, C.A.: Causal-consistent reversible debugging. In: Gnesi, S., Rensink, A. (eds.) FASE 2014. LNCS, vol. 8411, pp. 370–384. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54804-8_26
Lanese, I.: Exploiting user-definable synchronizations in graph transformation. Electr. Notes Theor. Comput. Sci. 211, 27–38 (2008)
Lanese, I., Mezzina, C.A., Stefani, J.: Reversibility in the higher-order \(\pi \)-calculus. Theor. Comput. Sci. 625, 25–84 (2016)
Lanese, I., Mezzina, C.A., Stefani, J.-B.: Reversing higher-order pi. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 478–493. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15375-4_33
Lanese, I., Mezzina, C.A., Tiezzi, F.: Causal-consistent reversibility. Bull. EATCS 3(114), 17 (2014)
Leeman, G.B.: A formal approach to undo operations in programming languages. ACM Trans. Program. Lang. Syst. 8(1), 50–87 (1986)
Lévy, J.: An algebraic interpretation of the \(\lambda \upbeta \)K-calculus; and an application of a labelled \(\lambda \)-calculus. Theor. Comput. Sci. 2(1), 97–114 (1976)
Medić, D., Mezzina, C.A.: Static VS dynamic reversibility in CCS. In: Devitt, S., Lanese, I. (eds.) RC 2016. LNCS, vol. 9720, pp. 36–51. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40578-0_3
Mezzina, C.A., Pérez, J.A.: Causally consistent reversible choreographies: a monitors-as-memories approach. In: Vanhoof, W., Pientka, B. (eds.) Proceedings of the 19th International Symposium on Principles and Practice of Declarative Programming, pp. 127–138. ACM, New York (2017)
Milner, R. (ed.): A Calculus of Communicating Systems. LNCS, vol. 92. Springer, Heidelberg (1980). https://doi.org/10.1007/3-540-10235-3
Perumalla, K.S., Park, A.J.: Reverse computation for rollback-based fault tolerance in large parallel systems - evaluating the potential gains and systems effects. Cluster Comput. 17(2), 303–313 (2014)
Phillips, I., Ulidowski, I.: A hierarchy of reverse bisimulations on stable configuration structures. Math. Struct. Comput. Sci. 22(2), 333–372 (2012)
Phillips, I., Ulidowski, I., Yuen, S.: A reversible process calculus and the modelling of the ERK signalling pathway. In: Glück, R., Yokoyama, T. (eds.) RC 2012. LNCS, vol. 7581, pp. 218–232. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36315-3_18
Phillips, I.C.C., Ulidowski, I.: Reversing algebraic process calculi. J. Log. Algebr. Program. 73(1–2), 70–96 (2007)
Prasad, K.V.S.: A calculus of broadcasting systems. Sci. Comput. Program. 25(2–3), 285–327 (1995)
Prasad, K.V.S.: Themes in broadcast calculi. In: IEEE 13th International Symposium on Parallel and Distributed Computing, ISPDC 2014, pp. 16–22 (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Mezzina, C.A. (2018). On Reversibility and Broadcast. In: Kari, J., Ulidowski, I. (eds) Reversible Computation. RC 2018. Lecture Notes in Computer Science(), vol 11106. Springer, Cham. https://doi.org/10.1007/978-3-319-99498-7_5
Download citation
DOI: https://doi.org/10.1007/978-3-319-99498-7_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-99497-0
Online ISBN: 978-3-319-99498-7
eBook Packages: Computer ScienceComputer Science (R0)