iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-319-97310-4_22
An Automated Matrix Profile for Mining Consecutive Repeats in Time Series | SpringerLink
Skip to main content

An Automated Matrix Profile for Mining Consecutive Repeats in Time Series

  • Conference paper
  • First Online:
PRICAI 2018: Trends in Artificial Intelligence (PRICAI 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11013))

Included in the following conference series:

Abstract

A key application of wearable sensors is remote patient monitoring, which facilitates clinicians to observe patients non-invasively, by examining the time series of sensor readings. For analysis of such time series, a recently proposed technique is Matrix Profile (MP). While being effective for certain time series mining tasks, MP depends on a key input parameter, the length of subsequences for which to search. We demonstrate that MP’s dependency on this input parameter impacts its effectiveness for finding patterns of interest. We focus on finding consecutive repeating patterns (CRPs), which represent human activities and exercises whilst tracked using wearable sensors. We demonstrate that MP cannot detect CRPs effectively and extend it by adding a locality preserving index. Our method automates the use of MP, and reduces the need for data labeling by experts. We demonstrate our algorithm’s effectiveness in detecting regions of CRPs through a number of real and synthetic datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Our code is available on http://goo.gl/TLfCLp.

References

  1. Andreu-Perez, J., Leff, D.R., Ip, H.M.D., Yang, G.Z.: From wearable sensors to smart implants toward pervasive and personalized healthcare. IEEE Trans. Biomed. Eng. 62(12), 2750–2762 (2015)

    Article  Google Scholar 

  2. Yeh, C.-C.M., Zhu, Y., Ulanova, L., Begum, N., Ding, Y., Dau, H.A., Silva, D.F., Mueen, A., Keogh, E.: Matrix profile I: all pairs similarity joins for time series: a unifying view that includes motifs, discords and shapelets. In: Proceedings of ICDM (2016)

    Google Scholar 

  3. Zhu, Y., Zimmerman, Z., Senobari, N.S., Yeh, C.C.M., Funning, G., Mueen, A., Brisk, P., Keogh, E.: Matrix profile II: exploiting a novel algorithm and GPUs to break the one hundred million barrier for time series motifs and joins. In: Proceedings of ICDM (2016)

    Google Scholar 

  4. Gharghabi, S., Ding, Y., Yeh, C.C.M., Kamgar, K., Ulanova, L., Keogh, E.: Matrix profile VIII: domain agnostic online semantic segmentation at superhuman performance levels. In: Proceedings of ICDM (2017)

    Google Scholar 

  5. Patel, S., Park, H., Bonato, P., Chan, L., Rodgers, M.: A review of wearable sensors and systems with application in rehabilitation. J. Neuro Eng. Rehabil. 9(1), 21 (2012)

    Article  Google Scholar 

  6. Kwapisz, J.R., Weiss, G.M., Moore, S.A.: Activity recognition using cell phone accelerometers. SIGKDD Explor. Newsl. 12(2), 74–82 (2011)

    Article  Google Scholar 

  7. Kowsar, Y., Moshtaghi, M., Velloso, E., Kulik, L., Leckie, C.: Detecting unseen anomalies in weight training exercises. In: Proceedings of OzCHI (2016)

    Google Scholar 

  8. Minnen, D., Isbell, C.L., Essa, I., Starner, T.: Discovering multivariate motifs using subsequence density estimation and greedy mixture learning. In: Proceedings of the 22nd National Conference on Artificial Intelligence, vol. 1, pp. 615–620. AAAI Press (2007)

    Google Scholar 

  9. Minnen, D., Starner, T., Essa, I., Isbell, C.: Improving activity discovery with automatic neighborhood estimation. In: Proceedings of IJCAI, pp. 2814–2819 (2017)

    Google Scholar 

  10. Vahdatpour, A., Amini, N., Sarrafzadeh, M.: Toward unsupervised activity discovery using multi-dimensional motif detection in time series. In: Proceedings of IJCAI, pp. 1261–1266 (2009)

    Google Scholar 

  11. Chiu, B., Keogh, E., Lonardi, S.: Probabilistic discovery of time series motifs. In: Proceedings of SIGKDD, pp. 493–498 (2003)

    Google Scholar 

  12. Bennell, K.: Adherence to home exercises in the treatment of knee osteoarthritis. https://healthsciences.unimelb.edu.au/research-groups/physiotherapy-research/chesm/more

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahtab Mirmomeni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mirmomeni, M., Kowsar, Y., Kulik, L., Bailey, J. (2018). An Automated Matrix Profile for Mining Consecutive Repeats in Time Series. In: Geng, X., Kang, BH. (eds) PRICAI 2018: Trends in Artificial Intelligence. PRICAI 2018. Lecture Notes in Computer Science(), vol 11013. Springer, Cham. https://doi.org/10.1007/978-3-319-97310-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97310-4_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97309-8

  • Online ISBN: 978-3-319-97310-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics