iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-319-95930-6_75
DTAST: A Novel Radical Framework for de Novo Transcriptome Assembly Based on Suffix Trees | SpringerLink
Skip to main content

DTAST: A Novel Radical Framework for de Novo Transcriptome Assembly Based on Suffix Trees

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10954))

Included in the following conference series:

  • 2927 Accesses

Abstract

In this article, we develop a novel radical framework for de novo transcriptome assembly based on suffix trees, called DTAST. DTAST extends contigs by reads that have the longest overlaps with the contigs’ terminuses. These reads can be found in linear time of the length of the reads through a well-designed suffix tree structure. Besides, DTAST proposes two strategies to extract transcript-representing paths: a depth-first enumeration strategy and a hybrid strategy based on length and coverage. Experimental results showed that DTAST performs more competitive than the other compared state-of-the-art de novo assemblers. The software with choice for either strategy is available at https://github.com/Jane110111107/DTAST.

This work is supported by National Natural Science Foundation of China under No. 61672325, No. 61472222, No. 61732009, and No. 61761136017.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Trapnell, C., Williams, B.A., Pertea, G., Mortazavi, A., Kwan, G., van Baren, M.J., Salzberg, S.L., Wold, B.J., Pachter, L.: Transcript assembly and abundance estimation from RNA-seq reveals thousands of new transcripts and switching among isoforms. Nat. Biotechnol. 28(5), 511 (2010)

    Article  Google Scholar 

  2. Chang, Z., Li, G., Liu, J., Zhang, Y., Ashby, C., Liu, D., Cramer, C.L., Huang, X.: Bridger: a new framework for de novo transcriptome assembly using RNA-seq data. Genome Biol. 16(1), 30 (2015)

    Article  Google Scholar 

  3. Pertea, M., Pertea, G.M., Antonescu, C.M., Chang, T.C., Mendell, J.T., Salzberg, S.L.: Stringtie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33(3), 290–295 (2015)

    Article  Google Scholar 

  4. Grabherr, M.G., Haas, B.J., Yassour, M., Levin, J.Z., Thompson, D.A., Amit, I., Adiconis, X., Fan, L., Raychowdhury, R., Zeng, Q., et al.: Full-length transcriptome assembly from RNA-seq data without a reference genome. Nat. Biotechnol. 29(7), 644–652 (2011)

    Article  Google Scholar 

  5. Pevzner, P.A., Tang, H., Waterman, M.S.: An Eulerian path approach to DNA fragment assembly. Proc. Natl. Acad. Sci. 98(17), 9748–9753 (2001)

    Article  MathSciNet  Google Scholar 

  6. Xie, Y., Wu, G., Tang, J., Luo, R., Patterson, J., Liu, S., Huang, W., He, G., Gu, S., Li, S., et al.: Soapdenovo-trans: de novo transcriptome assembly with short RNA-seq reads. Bioinformatics 30(12), 1660–1666 (2014)

    Article  Google Scholar 

  7. Schulz, M.H., Zerbino, D.R., Vingron, M., Birney, E.: Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics 28(8), 1086–1092 (2012)

    Article  Google Scholar 

  8. Peng, Y., Leung, H.C., Yiu, S.M., Lv, M.J., Zhu, X.G., Chin, F.Y.: IDBA-tran: a more robust de novo de bruijn graph assembler for transcriptomes with uneven expression levels. Bioinformatics 29(13), i326–i334 (2013)

    Article  Google Scholar 

  9. Robertson, G., Schein, J., Chiu, R., Corbett, R., Field, M., Jackman, S.D., Mungall, K., Lee, S., Okada, H.M., Qian, J.Q., et al.: De novo assembly and analysis of RNA-seq data. Nat. Methods 7(11), 909–912 (2010)

    Article  Google Scholar 

  10. Liu, J., Li, G., Chang, Z., Yu, T., Liu, B., McMullen, R., Chen, P., Huang, X.: Binpacker: packing-based de novo transcriptome assembly from RNA-seq data. PLoS Comput. Biol. 12(2), e1004772 (2016)

    Article  Google Scholar 

  11. Zhao, J., Feng, H., Zhu, D., Zhang, C., Xu, Y.: IsoTree: de novo transcriptome assembly from RNA-Seq reads. In: Cai, Z., Daescu, O., Li, M. (eds.) ISBRA 2017. LNCS, vol. 10330, pp. 71–83. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59575-7_7

    Chapter  Google Scholar 

  12. Heber, S., Alekseyev, M., Sze, S.H., Tang, H., Pevzner, P.A.: Splicing graphs and EST assembly problem. Bioinformatics 18(suppl 1), S181–S188 (2002)

    Article  Google Scholar 

  13. Griebel, T., Zacher, B., Ribeca, P., Raineri, E., Lacroix, V., Guigó, R., Sammeth, M.: Modelling and simulating generic RNA-seq experiments with the flux simulator. Nucleic Acids Res. 40(20), 10073–10083 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haodi Feng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, J., Feng, H., Zhu, D., Zhang, C., Xu, Y. (2018). DTAST: A Novel Radical Framework for de Novo Transcriptome Assembly Based on Suffix Trees. In: Huang, DS., Bevilacqua, V., Premaratne, P., Gupta, P. (eds) Intelligent Computing Theories and Application. ICIC 2018. Lecture Notes in Computer Science(), vol 10954. Springer, Cham. https://doi.org/10.1007/978-3-319-95930-6_75

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95930-6_75

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95929-0

  • Online ISBN: 978-3-319-95930-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics