iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-319-91262-2_16
Towards the Development of Sensor Platform for Processing Physiological Data from Wearable Sensors | SpringerLink
Skip to main content

Towards the Development of Sensor Platform for Processing Physiological Data from Wearable Sensors

  • Conference paper
  • First Online:
Artificial Intelligence and Soft Computing (ICAISC 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10842))

Included in the following conference series:

Abstract

The paper outlines a mobile sensor platform aimed at processing physiological data from wearable sensors. We discuss the requirements related to the use of low-cost portable devices in this scenario. Experimental analysis of four such devices, namely Microsoft Band 2, Empatica E4, eHealth Sensor Platform and BITalino (r)evolution is provided. Critical comparison of quality of HR and GSR signals leads to the conclusion that future works should focus on the BITalino, possibly combined with the MS Band 2 in some cases. This work is a foundation for possible applications in affective computing and telemedicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    With the use of e.g. AWARE framework, see http://www.awareframework.com/.

  2. 2.

    For details see http://bitalino.com/.

  3. 3.

    For details see https://www.cooking-hacks.com/documentation/tutorials/ehealth-biometric-sensor-platform-arduino-raspberry-pi-medical.

  4. 4.

    See: http://psychopy.org.

References

  1. Alexander, D.M., Trengove, C., Johnston, P., Cooper, T., August, J.P., Gordon, E.: Separating individual skin conductance responses in a short interstimulus-interval paradigm. J. Neurosci. Methods 146(1), 116–123 (2005)

    Article  Google Scholar 

  2. Arnold, M.B.: Emotion and Personality. Columbia University Press, New York (1960)

    Google Scholar 

  3. Benedek, M., Kaernbach, C.: Decomposition of skin conductance data by means of nonnegative deconvolution. Psychophysiology 47(4), 647–658 (2010)

    Google Scholar 

  4. Cacioppo, J.T., Berntson, G.G., Larsen, J.T., Poehlmann, K.M., Ito, T.A.: The psychophysiology of emotion. In: Handbook of Emotions, pp. 173–191. Guildford Press, New York (2000)

    Google Scholar 

  5. Düking, P., Hotho, A., Holmberg, H.C., Fuss, F.K., Sperlich, B.: Comparison of non-invasive individual monitoring of the training and health of athletes with commercially available wearable technologies. Front. Physiol. 7, 71 (2016)

    Article  Google Scholar 

  6. Garbarino, M., Lai, M., Bender, D., Picard, R., Tognetti, S.: Empatica E3 - a wearable wireless multi-sensor device for real-time computerized biofeedback and data acquisition. In: 2014 EAI 4th International Conference on Wireless Mobile Communication and Healthcare (Mobihealth), pp. 39–42 (2014)

    Google Scholar 

  7. Grundlehner, B., Brown, L., Penders, J., Gyselinckx, B.: The design and analysis of a real-time, continuous arousal monitor. In: Proceedings of the Sixth International Workshop on Wearable and Implantable Body Sensor Networks, pp. 156–161, June 2009

    Google Scholar 

  8. Hirsch, J.A., Bishop, B.: Respiratory sinus arrhythmia in humans: how breathing pattern modulates heart rate. Am. J. Physiol. 241(4), H620–H629 (1981). https://pdfs.semanticscholar.org/48fa/f00ce055ae1bfc5535dc446037b1d9aacf89.pdf, http://www.ncbi.nlm.nih.gov/pubmed/7315987

    Google Scholar 

  9. IMotions Biometric Research Platform: GSR Pocket Guide. IMotions Biometric Research Platform (2016)

    Google Scholar 

  10. Kutt, K., Nalepa, G.J., Giżycka, B., Jemioło, P., Adamczyk, M.: Bandreader - a mobile application for data acquisition from wearable devices in affective computing experiments. In: ICAISC 2018 (2018, submitted)

    Google Scholar 

  11. Lazarus, R.S.: Psychological Stress and the Coping Process. McGraw-Hill, New York (1966)

    Google Scholar 

  12. Marchewka, A., Żurawski, Ł., Jednoróg, K., Grabowska, A.: The nencki affective picture system (NAPS): introduction to a novel, standardized, wide-range, high-quality, realistic picture database. Behav. Res. Methods 46(2), 596–610 (2014)

    Article  Google Scholar 

  13. Nalepa, G.J., Gizycka, B., Kutt, K., Argasinski, J.K.: Affective design patterns in computer games. Scrollrunner case study. In: Communication Papers of the 2017 Federated Conference on Computer Science and Information Systems, FedCSIS 2017, pp. 345–352 (2017). https://doi.org/10.15439/2017F192

  14. Nalepa, G.J., Kutt, K., Bobek, S., Lepicki, M.Z.: AfCAI systems: affective computing with context awareness for ambient intelligence. Research proposal. In: Ezquerro, M.T.H., Nalepa, G.J., Mendez, J.T.P. (eds.) Proceedings of the Workshop on Affective Computing and Context Awareness in Ambient Intelligence (AfCAI 2016). CEUR Workshop Proceedings, vol. 1794 (2016). http://ceur-ws.org/xxx-1794/

  15. Nourbakhsh, N., Wang, Y., Chen, F., Calvo, R.A.: Using galvanic skin response for cognitive load measurement in arithmetic and reading tasks. In: Proceedings of the 24th Conference on Australian Computer-Human Interaction, OzCHI 2012, pp. 420–423 (2012)

    Google Scholar 

  16. Ohme, R., Reykowska, D., Wiener, D., Choromanska, A.: Analysis of neurophysiological reactions to advertising stimuli by means of EEG and galvanic skin response measures. J. Neurosci. Psychol. Econ. 2(1), 21–31 (2009)

    Article  Google Scholar 

  17. Orthony, A., Clore, G., Collins, A.: The Cognitive Structure of Emotions. Cambridge University Press, Cambridge (1988)

    Book  Google Scholar 

  18. Picard, R.W.: Affective Computing. MIT Press, Cambridge (1997)

    Google Scholar 

  19. Schmidt, S., Walach, H.: Electrodermal activity (EDA) - state-of-the-art measurement and techniques for parapsychological purposes. J. Parapsychol. 64, 139–163 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Szymon Bobek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kutt, K., Binek, W., Misiak, P., Nalepa, G.J., Bobek, S. (2018). Towards the Development of Sensor Platform for Processing Physiological Data from Wearable Sensors. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2018. Lecture Notes in Computer Science(), vol 10842. Springer, Cham. https://doi.org/10.1007/978-3-319-91262-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-91262-2_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-91261-5

  • Online ISBN: 978-3-319-91262-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics