iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-319-78455-7_12
Classical Complexity and Fixed-Parameter Tractability of Simultaneous Consecutive Ones Submatrix & Editing Problems | SpringerLink
Skip to main content

Classical Complexity and Fixed-Parameter Tractability of Simultaneous Consecutive Ones Submatrix & Editing Problems

  • Conference paper
  • First Online:
Frontiers in Algorithmics (FAW 2018)

Abstract

A binary matrix M has the consecutive ones property (C1P) for rows (resp. columns) if there is a permutation of its columns (resp. rows) that arranges the ones consecutively in all the rows (resp. columns). If M has the C1P for rows and the C1P for columns, then M is said to have the simultaneous consecutive ones property (SC1P). We focus on the classical complexity and fixed parameter tractability of Simultaneous Consecutive Ones Submatrix (SC1S) and Simultaneous Consecutive Ones Editing (SC1E) [1] problems here. SC1S problems focus on deleting a minimum number of rows, columns and rows as well as columns to establish the SC1P whereas SC1E problems deal with flipping a minimum number of 1-entries, 0-entries and 0-entries as well as 1-entries to obtain the SC1P. We show that the decision versions of the SC1S and SC1E problems are NP-complete. We consider the parameterized versions of the SC1S and SC1E problems with d, being the solution size, as the parameter and are defined as follows. Given a binary matrix M and a positive integer d, d-SC1S-R (d-SC1S-C) problem decides whether there exists a set of rows (columns) of size at most d whose deletion results in a matrix with the SC1P. The d-SC1S-RC problem decides whether there exists a set of rows as well as columns of size at most d whose deletion results in a matrix with the SC1P. The d-SC1P-0E (d-SC1P-1E) problem decides whether there exists a set of 0-entries (1-entries) of size at most d whose flipping results in a matrix with the SC1P. The d-SC1P-01E problem decides whether there exists a set of 0-entries as well as 1-entries of size at most d whose flipping results in a matrix with the SC1P. Using a related result from the literature [2], we show that d-SC1P-0E on general binary matrices is fixed-parameter tractable with a run time of \(O^{*}(45.5625^{d})\). We also give FPT algorithms for SC1S and SC1E problems on certain restricted binary matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Oswald, M., Reinelt, G.: The simultaneous consecutive ones problem. Theoret. Comput. Sci. 410(21–23), 1986–1992 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Kaplan, H., Shamir, R., Tarjan, R.E.: Tractability of parameterized completion problems on chordal, strongly chordal, and proper interval graphs. SIAM J. Comput. 28(5), 1906–1922 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Tucker, A.: A structure theorem for the consecutive 1’s property. J. Comb. Theory Ser. B 12(2), 153–162 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  4. Fishburn, P.C.: Interval orders and interval graphs. Discret. Math. 55(2), 135–149 (1985)

    Article  MATH  Google Scholar 

  5. Oswald, M.: Weighted consecutive ones problems. Ph.D. thesis (2003)

    Google Scholar 

  6. König, R., Schramm, G., Oswald, M., Seitz, H., Sager, S., Zapatka, M., Reinelt, G., Eils, R.: Discovering functional gene expression patterns in the metabolic network of escherichia coli with wavelets transforms. BMC Bioinform. 7(1), 119 (2006)

    Article  Google Scholar 

  7. Fulkerson, D., Gross, O.: Incidence matrices and interval graphs. Pac. J. Math. 15(3), 835–855 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  8. Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms. J. Comput. Syst. Sci. 13(3), 335–379 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hsu, W.L.: A simple test for the consecutive ones property. J. Algorithms 43(1), 1–16 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hsu, W.L., McConnell, R.M.: PC trees and circular-ones arrangements. Theoret. Comput. Sci. 296(1), 99–116 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. McConnell, R.M.: A certifying algorithm for the consecutive-ones property. In: Proceedings of 15th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 768–777. Society for Industrial and Applied Mathematics (2004)

    Google Scholar 

  12. Meidanis, J., Porto, O., Telles, G.P.: On the consecutive ones property. Discret. Appl. Math. 88(1–3), 325–354 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Raffinot, M.: Consecutive ones property testing: cut or swap. In: Löwe, B., Normann, D., Soskov, I., Soskova, A. (eds.) CiE 2011. LNCS, vol. 6735, pp. 239–249. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21875-0_25

    Chapter  Google Scholar 

  14. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity, vol. 4. Springer, London (2013). https://doi.org/10.1007/978-1-4471-5559-1

    Book  MATH  Google Scholar 

  15. Dom, M.: Recognition, Generation, and Application of Binary Matrices with the Consecutive Ones Property. Cuvillier, Gottingen (2009)

    MATH  Google Scholar 

  16. van’t Hof, P., Villanger, Y.: Proper interval vertex deletion. Algorithmica 65(4), 845–867 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. West, D.B.: Introduction to Graph Theory, vol. 2. Prentice Hall, Upper Saddle River (2009)

    Google Scholar 

  18. Uno, T., Satoh, H.: An efficient algorithm for enumerating chordless cycles and chordless paths. In: Džeroski, S., Panov, P., Kocev, D., Todorovski, L. (eds.) DS 2014. LNCS (LNAI), vol. 8777, pp. 313–324. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11812-3_27

    Google Scholar 

  19. Stirling, J.: Methodus differentialis, sive tractatus de summation et interpolation serierum infinitarium, London. The Differential Method: A Treatise of the Summation and Interpolation of Infinite Series (1730). (Trans. by, J. Holliday)[1749](1730)

    Google Scholar 

  20. Yannakakis, M.: Node-and edge-deletion NP-complete problems. In: Proceedings of 10th Annual ACM Symposium on Theory of Computing, pp. 253–264. ACM (1978)

    Google Scholar 

  21. Yannakakis, M.: Node-deletion problems on bipartite graphs. SIAM J. Comput. 10(2), 310–327 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  22. Natanzon, A., Shamir, R., Sharan, R.: Complexity classification of some edge modification problems. Discret. Appl. Math. 113(1), 109–128 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. Yannakakis, M.: Computing the minimum fill-in is NP-complete. SIAM J. Algebr. Discret. Methods 2(1), 77–79 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  24. Drange, P.G., Dregi, M.S., Lokshtanov, D., Sullivan, B.D.: On the threshold of intractability. In: Bansal, N., Finocchi, I. (eds.) ESA 2015. LNCS, vol. 9294, pp. 411–423. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48350-3_35

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. R. Rani or R. Subashini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rani, M.R., Jagalmohanan, M., Subashini, R. (2018). Classical Complexity and Fixed-Parameter Tractability of Simultaneous Consecutive Ones Submatrix & Editing Problems. In: Chen, J., Lu, P. (eds) Frontiers in Algorithmics. FAW 2018. Lecture Notes in Computer Science(), vol 10823. Springer, Cham. https://doi.org/10.1007/978-3-319-78455-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78455-7_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78454-0

  • Online ISBN: 978-3-319-78455-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics