iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-319-75608-0_9
Vehicle Classification Based on Convolutional Networks Applied to FMCW Radar Signals | SpringerLink
Skip to main content

Vehicle Classification Based on Convolutional Networks Applied to FMCW Radar Signals

  • Conference paper
  • First Online:
Traffic Mining Applied to Police Activities (TRAP 2017)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 728))

Included in the following conference series:

Abstract

This paper investigates the processing of Frequency-Modulated Continuous-Wave (FMCW) radar signals for vehicle classification. In the last years, deep learning has gained interest in several scientific fields and signal processing is not one exception. In this work we address the recognition of the vehicle category using a Convolutional Neural Network (CNN) applied to range-Doppler signatures. The developed system first transforms the 1-dimensional signal into a 3-dimensional signal that is subsequently used as input to the CNN. When using the trained model to predict the vehicle category, we obtained good performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Munoz-Ferreras, J.M., Calvo-Gallego, J., and Perez-Martinez, F. 2008. Monitoring road traffic with a high resolution lfmcw radar. In IEEE Radar Conference, 1–5.

    Google Scholar 

  2. Ki, Y.K., and D.K. Baik. 2006. Vehicle-classification algorithm for single-loop detectors using neural networks. IEEE Transactions on Vehicular Technology 55 (6): 1704–1711.

    Article  Google Scholar 

  3. De Angelis, G., A. De Angelis, V. Pasku, A. Moschitta, and P. Carbone. 2016 A simple magnetic signature vehicles detection and classification system for smart cities. In IEEE International Symposium on Systems Engineering (ISSE 2016), 1–6.

    Google Scholar 

  4. H. Sandhawalia, J. A. Rodriguez-Serrano, H. Poirier, and G. Csurka. 2013. Vehicle type classification from laser scanner profiles: A benchmark of feature descriptors. In 16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013), 517–522.

    Google Scholar 

  5. Sermanet, Pierre, David Eigen, Xiang Zhang, Michaël Mathieu, Robert Fergus, and Yann Lecun. 2014. Overfeat: Integrated recognition, localization and detection using convolutional networks.

    Google Scholar 

  6. Fang, J., H. Meng, H. Zhang, and X. Wang. 2007. A low-cost vehicle detection and classification system based on unmodulated continuous-wave radar. In 2007 IEEE Intelligent Transportation Systems Conference, 715–720.

    Google Scholar 

  7. Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. 2015. Going deeper with convolutions. In CVPR 2015.

    Google Scholar 

  8. K. Simonyan and A. Zisserman. 2014. Very deep convolutional networks for large-scale image recognition. CoRR, abs/1409.1556.

    Google Scholar 

  9. Jonathan Long, Evan Shelhamer, and Trevor Darrell. 2015. Fully convolutional networks for semantic segmentation. CVPR (to appear).

    Google Scholar 

  10. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In Proceedings of the IEEE International Conference on Computer Vision (ICCV 2015), pages 1026–1034.

    Google Scholar 

  11. J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. 2009. ImageNet: A Large-Scale Hierarchical Image Database. In CVPR09.

    Google Scholar 

  12. Yann Lecun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-based learning applied to document recognition. In Proceedings of the IEEE, 2278–2324.

    Google Scholar 

  13. Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. Imagenet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems 25, ed. F. Pereira, C.J.C. Burges, L. Bottou, and K.Q. Weinberger, 1097–1105. Curran Associates, Inc.

    Google Scholar 

  14. Srivastava, Nitish, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. 2014. Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning Research 15: 1929–1958.

    MathSciNet  MATH  Google Scholar 

  15. Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. 2014. How transferable are features in deep neural networks? In Advances in Neural Information Processing Systems 27, ed. Z. Ghahramani, M. Welling, C. Cortes, N.d. Lawrence, and K.q. Weinberger, 3320–3328. Curran Associates, Inc.

    Google Scholar 

Download references

Acknowledgements

The authors wish to tank Infomobility S.R.L. Concordia sulla Secchia (Modena, Italy) and Autostrade per l’Italia (Roma, Italy) for having provided the radar data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuele Capobianco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Capobianco, S., Facheris, L., Cuccoli, F., Marinai, S. (2018). Vehicle Classification Based on Convolutional Networks Applied to FMCW Radar Signals. In: Leuzzi, F., Ferilli, S. (eds) Traffic Mining Applied to Police Activities. TRAP 2017. Advances in Intelligent Systems and Computing, vol 728. Springer, Cham. https://doi.org/10.1007/978-3-319-75608-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-75608-0_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-75607-3

  • Online ISBN: 978-3-319-75608-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics