iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-319-74690-6_37
Stance Detection in Tweets Using a Majority Vote Classifier | SpringerLink
Skip to main content

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 723))

  • 3737 Accesses

Abstract

The task of stance detection is to determine whether someone is in favor or against a certain topic. A person may express the same stance towards a topic using positive or negative words. In this paper, several features and classifiers are explored to find out the combination that yields the best performance for stance detection. Due to the large number of features, ReliefF feature selection method was used to reduce the large dimensional feature space and improve the generalization capabilities. Experimental analyses were performed on five datasets, and the obtained results revealed that a majority vote classifier of the three classifiers: Random Forest, linear SVM and Gaussian Naïve Bayes classifiers can be adopted for stance detection task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mohammad, S., Kiritchenko, S., Sobhani, P., Zhu, X., Cherry, C.: SemEval-2016 Task 6: detecting stance in tweets. In: Proceedings of SemEval, pp. 31–41 (2016)

    Google Scholar 

  2. Jiang, L., Yu, M., Zhou, M., Liu, X., Zhao, T.: Target-dependent Twitter sentiment classification. In: Proceedings of ACL, pp. 151–160 (2011)

    Google Scholar 

  3. Augenstein, I., Rocktäschel, T., Vlachos, A., Bontcheva, K.: Stance detection with bidirectional conditional encoding. In: Proceedings of EMNLP, pp. 876–885 (2016)

    Google Scholar 

  4. Mohammad, S., Sobhani, P., Kiritchenko, S.: Stance and sentiment in tweets. Spec. Sect. ACM Trans. Internet Technol. Argum. Soc. Media , 17(3), 26 (2017)

    Google Scholar 

  5. Lai, M., Farías, D.I.H., Patti, V., Rosso, P.: Friends and enemies of Clinton and Trump: using context for detecting stance in political tweets. In: Mexican International Conference on Artificial Intelligence, pp. 155–168 (2016)‏

    Google Scholar 

  6. Ebrahimi, J., Dou, D., Lowd, D.: Weakly supervised tweet stance classification by relational bootstrapping. In: Proceedings of EMNLP, pp. 1012–1017 (2016)

    Google Scholar 

  7. Ebrahimi, J., Dou, D., Lowd, D.: A joint sentiment-target-stance model for stance classification in tweets. In: Proceedings of COLING, pp. 2656–2665 (2016)

    Google Scholar 

  8. Du, J., Xu, R., He, Y., Gui, L.: Stance classification with target-specific neural attention networks.‏ In: Proceedings of IJCAI, pp. 3988–3994 (2017)

    Google Scholar 

  9. Zarrella, G., Marsh, A.: MITRE at SemEval-2016 Task 6: transfer learning for stance detection. In: Proceedings of SemEval, pp. 458–463 (2016)

    Google Scholar 

  10. Wei, W., Zhang, X., Liu, X., Chen, W., Wang, T.: Pkudblab at SemEval-2016 Task 6: a specific convolutional neural network system for effective stance detection. In: Proceedings of SemEval, pp. 384–388 (2016)

    Google Scholar 

  11. Li, J., Luong, T., Jurafsky, D.: A hierarchical neural autoencoder for paragraphs and documents. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing, vol. 1, pp. 1106–1115 (2015)

    Google Scholar 

  12. Mikolov, T., Chen, K., Corrado, G., Dean, G.: Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013)

  13. Kim, Y.: Convolutional neural networks for sentence classification. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1746–1751 (2014)

    Google Scholar 

  14. Hutto, C.J., Gilbert, E.: Vader: a parsimonious rule-based model for sentiment analysis of social media text. In: Eighth International Conference on Weblogs and Social Media (ICWSM), pp. 216–255 (2014)

    Google Scholar 

  15. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)

    MATH  Google Scholar 

  16. Kononenko, I., Šimec, E., Robnik-Šikonja, M.: Overcoming the myopia of inductive learning algorithms with RELIEFF. J. Appl. Intell. 7(1), 39–55 (1997)

    Article  Google Scholar 

  17. Owoputi, O., O’Connor, B., Dyer, C., Gimpel, K., Schneider, N., Smith, N.A.: Improved part-of-speech tagging for online conversational text with word clusters. In: HLT-NAACL, pp. 380–390 (2013)

    Google Scholar 

  18. Loper, E., Bird, S.: NLTK: the natural language toolkit. In: Proceedings of the ACL Workshop on Effective Tools and Methodologies for Teaching Natural Language Processing and Computational Linguistics, pp. 63–70. ACL (2002)

    Google Scholar 

  19. Klein, D., Manning, C.D.: Accurate unlexicalized parsing. In: Proceedings of the 41st Annual Meeting on Association for Computational Linguistics, vol. 1, pp. 423–430 (2003)

    Google Scholar 

  20. Zhang, Z., Lan, M.: ECNU at SemEval 2016 Task 6: relevant or not? Supportive or Not? A two-step learning system for automatic detecting stance in tweets. In: Proceedings of SemEval, pp. 451–457 (2016)

    Google Scholar 

  21. Stone, P., Dumphy, D., Smith, M., Ogilvie, D.: The General Inquirer: A Computer Approach to Content Analysis. MIT Studies in Comparative Politics. MIT Press, Cambridge (1966)

    Google Scholar 

  22. Nielsen, F.Å.: A new ANEW: evaluation of a word list for sentiment analysis in microblogs. arXiv preprint arXiv:1103.2903 (2011)

  23. Whissell, C.: Using the revised dictionary of affect in language to quantify the emotional undertones of samples of natural language. Psychol. Rep. 105(2), 509–521 (2009)

    Article  Google Scholar 

  24. Wilson, T., Wiebe, J., Hoffmann, P.: Recognizing contextual polarity in phrase-level sentiment analysis. In: Proceedings of the Conference on Human Language Technology and Empirical Methods in Natural Language Processing, pp. 347–354. Association for Computational Linguistics (2005)

    Google Scholar 

  25. Hu, M., Liu, B.: Mining and summarizing customer reviews. In: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 168–177. ACM (2004)

    Google Scholar 

  26. Baccianella, S., Esuli, A., Sebastiani, F.: Sentiwordnet 3.0: an enhanced lexical resource for sentiment analysis and opinion mining. In: Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC), Valletta, Malta, pp. 2200–2204. European Language Resources Association (ELRA) (2010)

    Google Scholar 

  27. Balikas, G., Amini, M.R.: TwiSE at SemEval-2016 Task 4: Twitter sentiment classification. In: Proceedings of SemEval, pp. 85–91 (2016)

    Google Scholar 

  28. Kiritchenko, S., Zhu, X., Mohammad, S.: Sentiment analysis of short informal texts. J. Artif. Intell. Res. 50, 723–762 (2014)

    Google Scholar 

  29. Mohammad, S., Kiritchenko, S., Zhu, X.: NRC-Canada: building the state-of-the-art in sentiment analysis of tweets. In: Proceedings of SemEval, pp. 321–327 (2013)

    Google Scholar 

  30. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara S. Mourad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mourad, S.S., Shawky, D.M., Fayed, H.A., Badawi, A.H. (2018). Stance Detection in Tweets Using a Majority Vote Classifier. In: Hassanien, A., Tolba, M., Elhoseny, M., Mostafa, M. (eds) The International Conference on Advanced Machine Learning Technologies and Applications (AMLTA2018). AMLTA 2018. Advances in Intelligent Systems and Computing, vol 723. Springer, Cham. https://doi.org/10.1007/978-3-319-74690-6_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74690-6_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74689-0

  • Online ISBN: 978-3-319-74690-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics