iBet uBet web content aggregator. Adding the entire web to your favor.
iBet uBet web content aggregator. Adding the entire web to your favor.



Link to original content: https://doi.org/10.1007/978-3-319-69548-8_5
The Algorithm of Modelling and Analysis of Latent Semantic Relations: Linear Algebra vs. Probabilistic Topic Models | SpringerLink
Skip to main content

The Algorithm of Modelling and Analysis of Latent Semantic Relations: Linear Algebra vs. Probabilistic Topic Models

  • Conference paper
  • First Online:
Knowledge Engineering and Semantic Web (KESW 2017)

Abstract

This paper presents the algorithm of modelling and analysis of Latent Semantic Relations inside the argumentative type of documents collection. The novelty of the algorithm consists in using a systematic approach: in the combination of the probabilistic Latent Dirichlet Allocation (LDA) and Linear Algebra based Latent Semantic Analysis (LSA) methods; in considering each document as a complex of topics, defined on the basis of separate analysis of the particular paragraphs. The algorithm contains the following stages: modelling and analysis of Latent Semantic Relations consistently on LDA- and LSA-based levels; rules-based adjustment of the results of the two levels of analysis. The verification of the proposed algorithm for subjectively positive and negative Polish-language film reviews corpuses was conducted. The level of the recall rate and precision indicator, as a result of case study, allowed to draw the conclusions about the effectiveness of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. Addison-Wesley, Wokingham (2011). Second edition (1999)

    Google Scholar 

  2. Bahl, L., Baker, J., Jelinek, E., Mercer, R.: Perplexity – a measure of the difficulty of speech recognition tasks. In: Program, 94th Meeting of the Acoustical Society of America, vol. 62, p. S63 (1977)

    Google Scholar 

  3. Blei, D., Ng, A., Jordan, M.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)

    MATH  Google Scholar 

  4. Blei, D.: Introduction to probabilistic topic models. Comm. ACM 55(4), 77–84 (2012)

    Article  Google Scholar 

  5. Ali, D., Juanzi, L., Lizhu, Z., Faqir, M.: Knowledge discovery through directed probabilistic topic models: a survey. In: Proceedings of Frontiers of Computer Science in China, pp. 280–301 (2010)

    Google Scholar 

  6. Blei, D.: Topic modeling, http://www.cs.princeton.edu/~blei/topicmodeling.html

  7. Dumais, S.T., Furnas, G.W., Landauer, T.K., Deerwester, S.: Using latent semantic analysis to improve information retrieval. In: Proceedings of CHI 1988: Conference on Human Factors in Computing, pp. 281–285. ACM, New York (1988)

    Google Scholar 

  8. Deerwester, S., Dumais, S.T., Harshman, R.: Indexing by Latent Semantic Analysis (1990), http://lsa.colorado.edu/papers/JASIS.lsi.90.pdf

  9. Eden, L.: Matrix Methods in Data Mining and Pattern Recognition. SIAM (2007)

    Google Scholar 

  10. Furnas, G.W., Deerwester, S., Dumais, S.T., Landauer, T.K., Harshman, R.A., Streeter, L.A., Lochbaum, K.E.: Information retrieval using a singular value decomposition model of latent semantic structure. In: Proceedings of ACM SIGIR Conference, pp. s.465–s.480. ACM, New York (1998)

    Google Scholar 

  11. Salton, G., Michael, J.: McGill Introduction to Modern Information Retrieval. McGraw-Hill Computer Science Series, vol. XV, 448 p. McGraw-Hill, New York (1983)

    Google Scholar 

  12. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Comput. Surv. 31(3) (1999)

    Google Scholar 

  13. Gramacki, J., Gramacki, A.: Metody algebraiczne w zadaniach eksploracji danych na przykładzie automatycznego analizowania treści dokumentów. In: XVI Konferencja PLOUG, pp. 227–249 (2010)

    Google Scholar 

  14. Kapłanski, P., Rizun, N., Taranenko, Y., Seganti, A.: Text-mining similarity approximation operators for opinion mining in bi tools. In: Proceeding of the 11th Scientific Conference “Internet in the Information Society-2016”, pp. 121–141. University of Dąbrowa Górnicza (2016)

    Google Scholar 

  15. Canini, K.R., Shi, L., Griffiths, T.: Online inference of topics with latent dirichlet allocation. J. Mach. Learn. Res. Proc. Track 5, 65–72 (2009)

    Google Scholar 

  16. Tomanek, K.: Analiza sentymentu – metoda analizy danych jakościowych. Przykład zastosowania oraz ewaluacja słownika RID i metody klasyfikacji Bayesa w analizie danych jakościowych, Przegląd Socjologii Jakościowej, pp. 118–136 (2014), www.przegladsocjologiijakosciowej.org

  17. Aggarwal, C., Zhai, X.: Mining Text Data. Springer, New York (2012)

    Google Scholar 

  18. Leticia, H.A.: Comparing Latent Dirichlet Allocation and Latent Semantic Analysis as Classifiers, Doctor of Philosophy (Management Science), 226 p. (2011)

    Google Scholar 

  19. Papadimitrious, C.H., Raghavan, P., Tamaki, H., Vempala, S.: Latent semantic indexing: a probabilistic analysis. J. Comput. Syst. Sci. 61, 217–235 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  20. Rizun, N., Kapłanski, P., Taranenko, Y.: Development and research of the text messages semantic clustering methodology. In: 2016, Third European Network Intelligence Conference, vol. # 33, pp. 180–187. ENIC (2016)

    Google Scholar 

  21. Rizun, N., Kapłanski, P., Taranenko, Y.: Method of a Two-Level Text-Meaning Similarity Approximation of the Customers’ Opinions. Economic Studies – Scientific Papers. University of Economics in Katowice, vol. 296, pp. 64–85 (2016)

    Google Scholar 

  22. Rizun, N., Taranenko, Y.: Development of the algorithm of polish language film reviews preprocessing. In: Proceeding of the 2nd International Conference on Information Technologies in Management, Rocznik Naukowy Wydziału Zarządzania WSM (in print) (2017)

    Google Scholar 

  23. Rui, X., Donald, C., Wunsch, I.I.: Survey of clustering algorithms. IEEE Trans. Neural Netw. 16(3), 645–678 (2005)

    Article  Google Scholar 

  24. Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing. Commun. ACM 18(11), s.613–s.620 (1975)

    Google Scholar 

  25. Hofman, T.: Probabilistic latent semantic analysis. In: UAI 1999, pp. 289–296 (1999); Hofmann, T.: Probabilistic Latent Semantic Indexing. In: SIGIR, pp. 50–57 (1999)

    Google Scholar 

  26. Mika, T.: Term Weighting in Short Documents for Document Categorization, Keyword Extraction and Query Expansion. PhD Thesis, Series of Publications A, Report A-2013-1 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nina Rizun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Rizun, N., Taranenko, Y., Waloszek, W. (2017). The Algorithm of Modelling and Analysis of Latent Semantic Relations: Linear Algebra vs. Probabilistic Topic Models. In: Różewski, P., Lange, C. (eds) Knowledge Engineering and Semantic Web. KESW 2017. Communications in Computer and Information Science, vol 786. Springer, Cham. https://doi.org/10.1007/978-3-319-69548-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69548-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69547-1

  • Online ISBN: 978-3-319-69548-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics