Abstract
This paper presents the algorithm of modelling and analysis of Latent Semantic Relations inside the argumentative type of documents collection. The novelty of the algorithm consists in using a systematic approach: in the combination of the probabilistic Latent Dirichlet Allocation (LDA) and Linear Algebra based Latent Semantic Analysis (LSA) methods; in considering each document as a complex of topics, defined on the basis of separate analysis of the particular paragraphs. The algorithm contains the following stages: modelling and analysis of Latent Semantic Relations consistently on LDA- and LSA-based levels; rules-based adjustment of the results of the two levels of analysis. The verification of the proposed algorithm for subjectively positive and negative Polish-language film reviews corpuses was conducted. The level of the recall rate and precision indicator, as a result of case study, allowed to draw the conclusions about the effectiveness of the proposed algorithm.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. Addison-Wesley, Wokingham (2011). Second edition (1999)
Bahl, L., Baker, J., Jelinek, E., Mercer, R.: Perplexity – a measure of the difficulty of speech recognition tasks. In: Program, 94th Meeting of the Acoustical Society of America, vol. 62, p. S63 (1977)
Blei, D., Ng, A., Jordan, M.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)
Blei, D.: Introduction to probabilistic topic models. Comm. ACM 55(4), 77–84 (2012)
Ali, D., Juanzi, L., Lizhu, Z., Faqir, M.: Knowledge discovery through directed probabilistic topic models: a survey. In: Proceedings of Frontiers of Computer Science in China, pp. 280–301 (2010)
Blei, D.: Topic modeling, http://www.cs.princeton.edu/~blei/topicmodeling.html
Dumais, S.T., Furnas, G.W., Landauer, T.K., Deerwester, S.: Using latent semantic analysis to improve information retrieval. In: Proceedings of CHI 1988: Conference on Human Factors in Computing, pp. 281–285. ACM, New York (1988)
Deerwester, S., Dumais, S.T., Harshman, R.: Indexing by Latent Semantic Analysis (1990), http://lsa.colorado.edu/papers/JASIS.lsi.90.pdf
Eden, L.: Matrix Methods in Data Mining and Pattern Recognition. SIAM (2007)
Furnas, G.W., Deerwester, S., Dumais, S.T., Landauer, T.K., Harshman, R.A., Streeter, L.A., Lochbaum, K.E.: Information retrieval using a singular value decomposition model of latent semantic structure. In: Proceedings of ACM SIGIR Conference, pp. s.465–s.480. ACM, New York (1998)
Salton, G., Michael, J.: McGill Introduction to Modern Information Retrieval. McGraw-Hill Computer Science Series, vol. XV, 448 p. McGraw-Hill, New York (1983)
Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Comput. Surv. 31(3) (1999)
Gramacki, J., Gramacki, A.: Metody algebraiczne w zadaniach eksploracji danych na przykładzie automatycznego analizowania treści dokumentów. In: XVI Konferencja PLOUG, pp. 227–249 (2010)
Kapłanski, P., Rizun, N., Taranenko, Y., Seganti, A.: Text-mining similarity approximation operators for opinion mining in bi tools. In: Proceeding of the 11th Scientific Conference “Internet in the Information Society-2016”, pp. 121–141. University of Dąbrowa Górnicza (2016)
Canini, K.R., Shi, L., Griffiths, T.: Online inference of topics with latent dirichlet allocation. J. Mach. Learn. Res. Proc. Track 5, 65–72 (2009)
Tomanek, K.: Analiza sentymentu – metoda analizy danych jakościowych. Przykład zastosowania oraz ewaluacja słownika RID i metody klasyfikacji Bayesa w analizie danych jakościowych, Przegląd Socjologii Jakościowej, pp. 118–136 (2014), www.przegladsocjologiijakosciowej.org
Aggarwal, C., Zhai, X.: Mining Text Data. Springer, New York (2012)
Leticia, H.A.: Comparing Latent Dirichlet Allocation and Latent Semantic Analysis as Classifiers, Doctor of Philosophy (Management Science), 226 p. (2011)
Papadimitrious, C.H., Raghavan, P., Tamaki, H., Vempala, S.: Latent semantic indexing: a probabilistic analysis. J. Comput. Syst. Sci. 61, 217–235 (2000)
Rizun, N., Kapłanski, P., Taranenko, Y.: Development and research of the text messages semantic clustering methodology. In: 2016, Third European Network Intelligence Conference, vol. # 33, pp. 180–187. ENIC (2016)
Rizun, N., Kapłanski, P., Taranenko, Y.: Method of a Two-Level Text-Meaning Similarity Approximation of the Customers’ Opinions. Economic Studies – Scientific Papers. University of Economics in Katowice, vol. 296, pp. 64–85 (2016)
Rizun, N., Taranenko, Y.: Development of the algorithm of polish language film reviews preprocessing. In: Proceeding of the 2nd International Conference on Information Technologies in Management, Rocznik Naukowy Wydziału Zarządzania WSM (in print) (2017)
Rui, X., Donald, C., Wunsch, I.I.: Survey of clustering algorithms. IEEE Trans. Neural Netw. 16(3), 645–678 (2005)
Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing. Commun. ACM 18(11), s.613–s.620 (1975)
Hofman, T.: Probabilistic latent semantic analysis. In: UAI 1999, pp. 289–296 (1999); Hofmann, T.: Probabilistic Latent Semantic Indexing. In: SIGIR, pp. 50–57 (1999)
Mika, T.: Term Weighting in Short Documents for Document Categorization, Keyword Extraction and Query Expansion. PhD Thesis, Series of Publications A, Report A-2013-1 (2013)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Rizun, N., Taranenko, Y., Waloszek, W. (2017). The Algorithm of Modelling and Analysis of Latent Semantic Relations: Linear Algebra vs. Probabilistic Topic Models. In: Różewski, P., Lange, C. (eds) Knowledge Engineering and Semantic Web. KESW 2017. Communications in Computer and Information Science, vol 786. Springer, Cham. https://doi.org/10.1007/978-3-319-69548-8_5
Download citation
DOI: https://doi.org/10.1007/978-3-319-69548-8_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-69547-1
Online ISBN: 978-3-319-69548-8
eBook Packages: Computer ScienceComputer Science (R0)