Abstract
The growing digitization and networking process within our society has a large influence on all aspects of everyday life. Large amounts of data are being produced continuously, and when these are analyzed and interlinked they have the potential to create new knowledge and intelligent solutions for economy and society. To process this data, we developed the Big Data Integrator (BDI) Platform with various Big Data components available out-of-the-box. The integration of the components inside the BDI Platform requires components homogenization, which leads to the standardization of the development process. To support these activities we created the BDI Stack Lifecycle (SL), which consists of development, packaging, composition, enhancement, deployment and monitoring steps. In this paper, we show how we support the BDI SL with the enhancement applications developed in the BDE project. As an evaluation, we demonstrate the applicability of the BDI SL on three pilots in the domains of transport, social sciences and security.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
At the time of writing, more than 30 components are available in BDE Components Library.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
- 16.
- 17.
- 18.
- 19.
- 20.
- 21.
- 22.
- 23.
- 24.
- 25.
- 26.
- 27.
- 28.
- 29.
- 30.
- 31.
- 32.
- 33.
- 34.
- 35.
- 36.
- 37.
- 38.
- 39.
- 40.
- 41.
- 42.
- 43.
The typical loading time for a set of images: 400 s.
- 44.
The typical Spark job execution time for Change Detector: 1000 s.
- 45.
References
Auer, S., et al.: The BigDataEurope platform – supporting the variety dimension of big data. In: Cabot, J., Virgilio, R., Torlone, R. (eds.) ICWE 2017. LNCS, vol. 10360, pp. 41–59. Springer, Cham (2017). doi:10.1007/978-3-319-60131-1_3. http://jens-lehmann.org/files/2017/icwe_bde.pdf
Ermilov, I.: Scalable spark/hdfs workbench using docker (2016), https://www.big-data-europe.eu/scalable-sparkhdfs-workbench-using-docker/. Retrieved 21 May 2017
Ermilov, I.: Developing spark applications with docker and BDE (2017), https://www.big-data-europe.eu/developing-spark-applications-with-docker-and-bde/. Retrieved 21 May 2017
Ermilov, I.: User interface integration in BDI platform (integrator UI application) (2017), https://www.big-data-europe.eu/user-interface-integration-in-bdi-platform-integrator-ui-application/. Retrieved 21 May 2017
Grady, N.W.: KDD meets big data. In: 2016 IEEE International Conference on Big Data (Big Data), pp. 1603–1608. IEEE (2016)
Harney, J., Lim, S.H., Sukumar, S., Stansberry, D., Xenopoulos, P.: On-demand data analytics in HPC environments at leadership computing facilities: Challenges and experiences. In: 2016 IEEE International Conference on Big Data (Big Data), pp. 2087–2096. IEEE (2016)
Heit, J., Liu, J., Shah, M.: An architecture for the deployment of statistical models for the big data era. In: 2016 IEEE International Conference on Big Data (Big Data), pp. 1377–1384. IEEE (2016)
Jabeen, H.: Bde vs. other hadoop distributions (2016), https://www.big-data-europe.eu/bde-vs-other-hadoop-distributions/. Retrieved 21 May 2017
Konstantopoulos, S., Charalambidis, A., Mouchakis, G., Troumpoukis, A., Jakobitch, J., Karkaletsis, V.: Semantic web technologies and big data infrastructures: SPARQL federated querying of heterogeneous big data stores. In: ISWC Demos and Posters Track (2016)
Kyzirakos, K., Karpathiotakis, M., Koubarakis, M.: Strabon: a semantic geospatial DBMS. In: Cudré-Mauroux, P., Heflin, J., Sirin, E., Tudorache, T., Euzenat, J., Hauswirth, M., Parreira, J.X., Hendler, J., Schreiber, G., Bernstein, A., Blomqvist, E. (eds.) ISWC 2012. LNCS, vol. 7649, pp. 295–311. Springer, Heidelberg (2012). doi:10.1007/978-3-642-35176-1_19
Kyzirakos, K., Vlachopoulos, I., Savva, D., Manegold, S., Koubarakis, M.: Geotriples: a tool for publishing geospatial data as RDF graphs using R2RML mappings. In: Proceedings of the 2014 International Conference on Posters & Demonstrations Track, vol. 1272, pp. 393–396. CEUR-WS. org (2014)
Nikolaou, C., Dogani, K., Bereta, K., Garbis, G., Karpathiotakis, M., Kyzirakos, K., Koubarakis, M.: Sextant: Visualizing time-evolving linked geospatial data. Web Semant. Sci. Serv. Agents World Wide Web 35, 35–52 (2015)
Rahman, F., Slepian, M., Mitra, A.: A novel big-data processing framework for healthcare applications: big-data-healthcare-in-a-box. In: 2016 IEEE International Conference on Big Data (Big Data), pp. 3548–3555. IEEE (2016)
Rodriguez, P., Haghighatkhah, A., Lwakatare, L.E., Teppola, S., Suomalainen, T., Eskeli, J., Karvonen, T., Kuvaja, P., Verner, J.M., Oivo, M.: Continuous deployment of software intensive products and services: a systematic mapping study. J. Syst. Softw. 123, 263–291 (2017)
Sebrechts, M., Borny, S., Vanhove, T., Van Seghbroeck, G., Wauters, T., Volckaert, B., De Turck, F.: Model-driven deployment and management of workflows on analytics frameworks. In: 2016 IEEE International Conference on Big Data (Big Data), pp. 2819–2826. IEEE (2016)
Sezer, O.B., Dogdu, E., Ozbayoglu, M., Onal, A.: An extended iot framework with semantics, big data, and analytics. In: 2016 IEEE International Conference on Big Data (Big Data), pp. 1849–1856. IEEE (2016)
Shearer, C.: The CRISP-DM model: the new blueprint for data mining. J. Data Warehouse. 5(4), 13–22 (2000)
Tsakalozos, K., Johns, C., Monroe, K., VanderGiessen, P., Mcleod, A., Rosales, A.: Open big data infrastructures to everyone. In: 2016 IEEE International Conference on Big Data (Big Data), pp. 2127–2129. IEEE (2016)
Versteden, A., Pauwels, E.: State-of-the-dart web applications using microservices and linked data. In: Maleshkova, M., Verborgh, R., Keppmann, F.L. (eds.) 4th Workshop on Services and Applications over Linked APIs and Data (SALAD), vol. 1629, pp. 25–36. CEUR Workshop Proceedings, Aachen (2016). http://ceur-ws.org/Vol-1629/paper4.pdf
Acknowledgments
This work was supported by grant from the European Union’s Horizon 2020 research Europe flag and innovation program for the project Big Data Europe (GA no. 644564).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Ermilov, I. et al. (2017). Managing Lifecycle of Big Data Applications. In: Różewski, P., Lange, C. (eds) Knowledge Engineering and Semantic Web. KESW 2017. Communications in Computer and Information Science, vol 786. Springer, Cham. https://doi.org/10.1007/978-3-319-69548-8_18
Download citation
DOI: https://doi.org/10.1007/978-3-319-69548-8_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-69547-1
Online ISBN: 978-3-319-69548-8
eBook Packages: Computer ScienceComputer Science (R0)